-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathkth-smallest-element-in-a-bst.py
71 lines (55 loc) · 1.55 KB
/
kth-smallest-element-in-a-bst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
'''
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
'''
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def kthSmallest(self, root: TreeNode, k: int) -> int:
# Approach one
if not root or k <= 0: return None
def inorder(root):
if not root: return []
return inorder(root.left) + [root.val] + inorder(root.right)
res = inorder(root)
return res[k-1] if k <= len(res) else None
# Approach two
# if not root or k <= 0: return None
# res , stack = [], []
# while True:
# while root:
# stack.append(root)
# root = root.left
# if not stack:
# if k > len(res):
# return None
# else:
# return res[k-1]
# node = stack.pop()
# res.append(node.val)
# if node.right: root = node.right