|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# TME 2-3 : Diffusion\n" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 12, |
| 13 | + "metadata": { |
| 14 | + "collapsed": false |
| 15 | + }, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "# Parsing\n", |
| 19 | + "with open(\"data/cascades_train.txt\") as f:\n", |
| 20 | + " cascades_train = f.read()\n", |
| 21 | + "\n", |
| 22 | + "diffusions_train = []\n", |
| 23 | + "times_train = []\n", |
| 24 | + "for line in cascades_train.split('\\n'):\n", |
| 25 | + " diff = line.strip().split(';')\n", |
| 26 | + " diff = [s.split(':') for s in diff if len(s) > 1]\n", |
| 27 | + " diff = {int(l[0]):float(l[1]) for l in diff}\n", |
| 28 | + " times = {}\n", |
| 29 | + " for elt, t in diff.items():\n", |
| 30 | + " if t in times:\n", |
| 31 | + " times[t].append(elt)\n", |
| 32 | + " else:\n", |
| 33 | + " times[t] = [elt]\n", |
| 34 | + " diffusions_train.append(diff)\n", |
| 35 | + " times_train.append(times)" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 21, |
| 41 | + "metadata": { |
| 42 | + "collapsed": false |
| 43 | + }, |
| 44 | + "outputs": [ |
| 45 | + { |
| 46 | + "name": "stdout", |
| 47 | + "output_type": "stream", |
| 48 | + "text": [ |
| 49 | + "Diffusion n°0 : {3: 4.0, 4: 10.0, 5: 8.0, 8: 3.0, 73: 4.0, 12: 7.0, 98: 5.0, 82: 11.0, 84: 5.0, 86: 5.0, 89: 3.0, 26: 1.0, 93: 2.0, 96: 7.0, 34: 9.0, 41: 2.0, 42: 2.0, 43: 4.0, 47: 6.0, 48: 6.0, 50: 7.0, 52: 8.0, 54: 9.0, 55: 7.0, 56: 1.0, 20: 7.0, 61: 5.0}\n", |
| 50 | + "Diffusion n°0 : {1.0: [26, 56], 2.0: [93, 41, 42], 3.0: [8, 89], 4.0: [3, 73, 43], 5.0: [98, 84, 86, 61], 6.0: [47, 48], 7.0: [12, 96, 50, 55, 20], 8.0: [5, 52], 9.0: [34, 54], 10.0: [4], 11.0: [82]}\n", |
| 51 | + "Tous les temps : {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0}\n", |
| 52 | + "Tous les noeuds : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99}\n" |
| 53 | + ] |
| 54 | + } |
| 55 | + ], |
| 56 | + "source": [ |
| 57 | + "from functools import reduce\n", |
| 58 | + "# Dans 'diffusions_train' chaque élément est une diffusion,\n", |
| 59 | + "# chaque diffusion est un dictionnaire {élément:temps d'infection}\n", |
| 60 | + "print(\"Diffusion n°0 :\", diffusions_train[0])\n", |
| 61 | + "\n", |
| 62 | + "# Dans 'times_train', chaque élément est une diffusion,\n", |
| 63 | + "# chaque diffusion est un dictionnaire {temps:[éléments infectés]}\n", |
| 64 | + "print(\"Diffusion n°0 :\", times_train[0])\n", |
| 65 | + "\n", |
| 66 | + "all_times = reduce(lambda l,m:set(l)|set(m), [d.keys() for d in times_train])\n", |
| 67 | + "print(\"Tous les temps :\", all_times)\n", |
| 68 | + "all_nodes = reduce(lambda l,m:set(l)|set(m), [d.keys() for d in diffusions_train])\n", |
| 69 | + "print(\"Tous les noeuds :\", all_nodes)" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": 30, |
| 75 | + "metadata": { |
| 76 | + "collapsed": false |
| 77 | + }, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "# Apprentissage\n", |
| 81 | + "\n", |
| 82 | + "# Calcul de D+ et D-\n", |
| 83 | + "Dplus = []\n", |
| 84 | + "Dminus = []\n", |
| 85 | + "for u in all_nodes:\n", |
| 86 | + " Dplus.append([])\n", |
| 87 | + " Dminus.append([])\n", |
| 88 | + " for v in all_nodes:\n", |
| 89 | + " Dplus[u].append(set())\n", |
| 90 | + " Dminus[u].append(0)\n", |
| 91 | + " for idx, diff in enumerate(diffusions_train):\n", |
| 92 | + " if v in diff and u in diff and diff[v] > diff[u]:\n", |
| 93 | + " Dplus[u][v].add(idx)\n", |
| 94 | + " if v not in diff and u in diff:\n", |
| 95 | + " Dminus[u][v] += 1\n", |
| 96 | + " \n" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 31, |
| 102 | + "metadata": { |
| 103 | + "collapsed": false |
| 104 | + }, |
| 105 | + "outputs": [ |
| 106 | + { |
| 107 | + "name": "stdout", |
| 108 | + "output_type": "stream", |
| 109 | + "text": [ |
| 110 | + "{2944, 4225, 390, 2438, 3591, 2825, 4746, 4107, 2316, 4495, 3986, 1428, 1301, 151, 2202, 3098, 2076, 3614, 1056, 1825, 546, 675, 2722, 3623, 3496, 1194, 307, 3380, 309, 4915, 2615, 4023, 441, 827, 1341, 1598, 4292, 3653, 4165, 967, 2887, 4937, 2764, 4174, 4688, 1105, 1107, 852, 1621, 2646, 3540, 984, 3033, 2266, 2650, 2140, 3798, 4061, 3557, 4325, 999, 2407, 362, 746, 1130, 1902, 3823, 1904, 2672, 4079, 4220, 1782, 3321, 3963, 124, 1277}\n", |
| 111 | + "531\n" |
| 112 | + ] |
| 113 | + } |
| 114 | + ], |
| 115 | + "source": [ |
| 116 | + "print(Dplus[5][6])\n", |
| 117 | + "print(Dminus[5][6])" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": 34, |
| 123 | + "metadata": { |
| 124 | + "collapsed": false |
| 125 | + }, |
| 126 | + "outputs": [ |
| 127 | + { |
| 128 | + "name": "stdout", |
| 129 | + "output_type": "stream", |
| 130 | + "text": [ |
| 131 | + "==== 0 ====\n" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "ename": "ZeroDivisionError", |
| 136 | + "evalue": "division by zero", |
| 137 | + "output_type": "error", |
| 138 | + "traceback": [ |
| 139 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 140 | + "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", |
| 141 | + "\u001b[0;32m<ipython-input-34-ca5ad5c1f616>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mall_nodes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m theta_star[u,v] = sum([1/compute_P(diff, times, v, new_theta_hat) \n\u001b[0;32m---> 23\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mdiff\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimes\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdiffusions_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimes_train\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m if v in diff])\n\u001b[1;32m 25\u001b[0m \u001b[0mtheta_star\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mnew_theta_hat\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDplus\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mDminus\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 142 | + "\u001b[0;32m<ipython-input-34-ca5ad5c1f616>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 22\u001b[0m theta_star[u,v] = sum([1/compute_P(diff, times, v, new_theta_hat) \n\u001b[1;32m 23\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdiff\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimes\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdiffusions_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimes_train\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m if v in diff])\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0mtheta_star\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mnew_theta_hat\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDplus\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mDminus\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mu\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0mold_theta_hat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_theta_hat\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 143 | + "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" |
| 144 | + ] |
| 145 | + } |
| 146 | + ], |
| 147 | + "source": [ |
| 148 | + "import numpy as np\n", |
| 149 | + "\n", |
| 150 | + "def compute_P(diff, times, v, theta):\n", |
| 151 | + " \"\"\" Calcule P_{tdv}(v)\n", |
| 152 | + " :param times: dict {temps:[éléments]}\"\"\"\n", |
| 153 | + " produit = 1\n", |
| 154 | + " t_vD = diff[v]\n", |
| 155 | + " if t_vD - 1 in times:\n", |
| 156 | + " for w in times[t_vD - 1]:\n", |
| 157 | + " produit *= (1 - theta[w,v])\n", |
| 158 | + " return 1 - produit\n", |
| 159 | + "\n", |
| 160 | + "old_theta_hat = np.zeros((len(all_nodes), len(all_nodes)))\n", |
| 161 | + "new_theta_hat = np.random.random((len(all_nodes), len(all_nodes)))\n", |
| 162 | + "\n", |
| 163 | + "it = 0\n", |
| 164 | + "while not np.allclose(old_theta_hat, new_theta_hat) and it < 500:\n", |
| 165 | + " print(\"==== %d ====\" % it)\n", |
| 166 | + " theta_star = np.zeros_like(new_theta_hat)\n", |
| 167 | + " for u in all_nodes:\n", |
| 168 | + " for v in all_nodes:\n", |
| 169 | + " theta_star[u,v] = sum([1/compute_P(diff, times, v, new_theta_hat) \n", |
| 170 | + " for diff, times in zip(diffusions_train, times_train)\n", |
| 171 | + " if v in diff and #todo check\n", |
| 172 | + " ])\n", |
| 173 | + " theta_star[u,v] *= new_theta_hat[u,v] / (len(Dplus[u][v]) + Dminus[u][v])\n", |
| 174 | + " old_theta_hat = new_theta_hat\n", |
| 175 | + " new_theta_hat = theta_star\n", |
| 176 | + " it += 1\n", |
| 177 | + " \n", |
| 178 | + "print(new_theta_hat)" |
| 179 | + ] |
| 180 | + } |
| 181 | + ], |
| 182 | + "metadata": { |
| 183 | + "kernelspec": { |
| 184 | + "display_name": "Python 3", |
| 185 | + "language": "python", |
| 186 | + "name": "python3" |
| 187 | + }, |
| 188 | + "language_info": { |
| 189 | + "codemirror_mode": { |
| 190 | + "name": "ipython", |
| 191 | + "version": 3 |
| 192 | + }, |
| 193 | + "file_extension": ".py", |
| 194 | + "mimetype": "text/x-python", |
| 195 | + "name": "python", |
| 196 | + "nbconvert_exporter": "python", |
| 197 | + "pygments_lexer": "ipython3", |
| 198 | + "version": "3.5.2" |
| 199 | + } |
| 200 | + }, |
| 201 | + "nbformat": 4, |
| 202 | + "nbformat_minor": 2 |
| 203 | +} |
0 commit comments