@@ -9,31 +9,31 @@ class NetG(nn.Module):
9
9
10
10
def __init__ (self , opt ):
11
11
super (NetG , self ).__init__ ()
12
- ngf = opt .ngf # 生成器feature map数
12
+ ngf = opt .ngf # 生成器 map数
13
13
14
14
self .main = nn .Sequential (
15
- # 输入是一个nz维度的噪声,我们可以认为它是一个1*1*nz的feature map
16
- nn .ConvTranspose2d (opt .nz , ngf * 8 , 4 , 1 , 0 , bias = False ),
15
+ # 输入是一个nz维度的噪声,我们可以认为它是一个1*1*nz的 map
16
+ nn .ConvTranspose2d (opt .nz , ngf * 8 , kernel_size = 4 , stride = 1 , padding = 0 , bias = False ),
17
17
nn .BatchNorm2d (ngf * 8 ),
18
18
nn .ReLU (True ),
19
19
# 上一步的输出形状:(ngf*8) x 4 x 4
20
20
21
- nn .ConvTranspose2d (ngf * 8 , ngf * 4 , 4 , 2 , 1 , bias = False ),
21
+ nn .ConvTranspose2d (ngf * 8 , ngf * 4 , kernel_size = 4 , stride = 2 , padding = 1 , bias = False ),
22
22
nn .BatchNorm2d (ngf * 4 ),
23
23
nn .ReLU (True ),
24
24
# 上一步的输出形状: (ngf*4) x 8 x 8
25
25
26
- nn .ConvTranspose2d (ngf * 4 , ngf * 2 , 4 , 2 , 1 , bias = False ),
26
+ nn .ConvTranspose2d (ngf * 4 , ngf * 2 , kernel_size = 4 , stride = 2 , padding = 1 , bias = False ),
27
27
nn .BatchNorm2d (ngf * 2 ),
28
28
nn .ReLU (True ),
29
29
# 上一步的输出形状: (ngf*2) x 16 x 16
30
30
31
- nn .ConvTranspose2d (ngf * 2 , ngf , 4 , 2 , 1 , bias = False ),
31
+ nn .ConvTranspose2d (ngf * 2 , ngf , kernel_size = 4 , stride = 2 , padding = 1 , bias = False ),
32
32
nn .BatchNorm2d (ngf ),
33
33
nn .ReLU (True ),
34
34
# 上一步的输出形状:(ngf) x 32 x 32
35
35
36
- nn .ConvTranspose2d (ngf , 3 , 5 , 3 , 1 , bias = False ),
36
+ nn .ConvTranspose2d (ngf , 3 , kernel_size = 5 , stride = 3 , padding = 1 , bias = False ),
37
37
nn .Tanh () # 输出范围 -1~1 故而采用Tanh
38
38
# 输出形状:3 x 96 x 96
39
39
)
@@ -52,26 +52,26 @@ def __init__(self, opt):
52
52
ndf = opt .ndf
53
53
self .main = nn .Sequential (
54
54
# 输入 3 x 96 x 96
55
- nn .Conv2d (3 , ndf , 5 , 3 , 1 , bias = False ),
55
+ nn .Conv2d (3 , ndf , kernel_size = 5 , stride = 3 , padding = 1 , bias = False ),
56
56
nn .LeakyReLU (0.2 , inplace = True ),
57
57
# 输出 (ndf) x 32 x 32
58
58
59
- nn .Conv2d (ndf , ndf * 2 , 4 , 2 , 1 , bias = False ),
59
+ nn .Conv2d (ndf , ndf * 2 , kernel_size = 4 , stride = 2 , padding = 1 , bias = False ),
60
60
nn .BatchNorm2d (ndf * 2 ),
61
61
nn .LeakyReLU (0.2 , inplace = True ),
62
62
# 输出 (ndf*2) x 16 x 16
63
63
64
- nn .Conv2d (ndf * 2 , ndf * 4 , 4 , 2 , 1 , bias = False ),
64
+ nn .Conv2d (ndf * 2 , ndf * 4 , kernel_size = 4 , stride = 2 , padding = 1 , bias = False ),
65
65
nn .BatchNorm2d (ndf * 4 ),
66
66
nn .LeakyReLU (0.2 , inplace = True ),
67
67
# 输出 (ndf*4) x 8 x 8
68
68
69
- nn .Conv2d (ndf * 4 , ndf * 8 , 4 , 2 , 1 , bias = False ),
69
+ nn .Conv2d (ndf * 4 , ndf * 8 , kernel_size = 4 , stride = 2 , padding = 1 , bias = False ),
70
70
nn .BatchNorm2d (ndf * 8 ),
71
71
nn .LeakyReLU (0.2 , inplace = True ),
72
72
# 输出 (ndf*8) x 4 x 4
73
73
74
- nn .Conv2d (ndf * 8 , 1 , 4 , 1 , 0 , bias = False ),
74
+ nn .Conv2d (ndf * 8 , 1 , kernel_size = 4 , stride = 1 , padding = 0 , bias = False ),
75
75
nn .Sigmoid () # 输出一个数(概率)
76
76
)
77
77
0 commit comments