-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathaliases.py
42 lines (35 loc) · 1.68 KB
/
aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""New names fixed for plots in the paper
"""
from collections import OrderedDict
def new_names_classifier():
""" New names assigned to each classifier
"""
new_names = OrderedDict([('ridge', 'Ridge'),
('svc_l1', r'SVC-$\ell_1$'),
('svc_l2', r'SVC-$\ell_2$'),
('knn', 'K-NN'),
('GaussianNB', 'Gaussian \n Naive Bayes'),
('RandomF', 'Random Forest'),
('logistic_l1', r'Logistic-$\ell_1$'),
('logistic_l2', r'Logistic-$\ell_2$'),
('anova_svcl1', 'ANOVA + \n SVC-$\ell_1$'),
('anova_svcl2', 'ANOVA + \n SVC-$\ell_2$')])
return new_names
def new_names_atlas():
"""New names assigned to each atlas
"""
new_names = OrderedDict([('MODL/64', 'MODL dict. learning \n (64 networks)'),
('MODL/128', 'MODL dict. learning \n (128 networks)'),
('AAL', 'AAL \n (116 regions)'),
('BASC/regions', 'BASC \n (122 networks)'),
('BASC/networks', 'BASC \n (122 networks)'),
('HarvardOxford', 'Harvard Oxford \n (118 regions)'),
('Power', 'Power \n (264 regions)')])
return new_names
def new_names_measure():
"""New names assigned to each measure
"""
new_names = OrderedDict([('correlation', 'Correlation'),
('partial correlation', 'Partial \n Correlation'),
('tangent', 'Tangent')])
return new_names