|
| 1 | +import torch, sys, pickle |
| 2 | +from transformers import AutoTokenizer, AutoModelForSequenceClassification |
| 3 | + |
| 4 | + |
| 5 | +model, tokenizer = None, None |
| 6 | + |
| 7 | +def nn_init(device, dataset, returns=False): |
| 8 | + global model, tokenizer |
| 9 | + if dataset == 'sst2': |
| 10 | + tokenizer = AutoTokenizer.from_pretrained('textattack/bert-base-uncased-SST-2') |
| 11 | + model = AutoModelForSequenceClassification.from_pretrained('textattack/bert-base-uncased-SST-2', return_dict=False) |
| 12 | + elif dataset == 'imdb': |
| 13 | + tokenizer = AutoTokenizer.from_pretrained('textattack/bert-base-uncased-imdb') |
| 14 | + model = AutoModelForSequenceClassification.from_pretrained('textattack/bert-base-uncased-imdb', return_dict=False) |
| 15 | + elif dataset == 'rotten': |
| 16 | + tokenizer = AutoTokenizer.from_pretrained('textattack/bert-base-uncased-rotten-tomatoes') |
| 17 | + model = AutoModelForSequenceClassification.from_pretrained('textattack/bert-base-uncased-rotten-tomatoes', return_dict=False) |
| 18 | + |
| 19 | + model.to(device) |
| 20 | + model.eval() |
| 21 | + model.zero_grad() |
| 22 | + |
| 23 | + if returns: |
| 24 | + return model, tokenizer |
| 25 | + |
| 26 | +def move_to_device(device): |
| 27 | + global model |
| 28 | + model.to(device) |
| 29 | + |
| 30 | +def predict(model, inputs_embeds, attention_mask=None): |
| 31 | + return model(inputs_embeds=inputs_embeds, attention_mask=attention_mask)[0] |
| 32 | + |
| 33 | +def nn_forward_func(input_embed, attention_mask=None, position_embed=None, type_embed=None, return_all_logits=False): |
| 34 | + global model |
| 35 | + embeds = input_embed + position_embed + type_embed |
| 36 | + embeds = model.bert.embeddings.dropout(model.bert.embeddings.LayerNorm(embeds)) |
| 37 | + pred = predict(model, embeds, attention_mask=attention_mask) |
| 38 | + if return_all_logits: |
| 39 | + return pred |
| 40 | + else: |
| 41 | + return pred.max(1).values |
| 42 | + |
| 43 | +def load_mappings(dataset, knn_nbrs=500): |
| 44 | + with open(f'processed/knns/bert_{dataset}_{knn_nbrs}.pkl', 'rb') as f: |
| 45 | + [word_idx_map, word_features, adj] = pickle.load(f) |
| 46 | + word_idx_map = dict(word_idx_map) |
| 47 | + |
| 48 | + return word_idx_map, word_features, adj |
| 49 | + |
| 50 | +def construct_input_ref_pair(tokenizer, text, ref_token_id, sep_token_id, cls_token_id, device): |
| 51 | + text_ids = tokenizer.encode(text, add_special_tokens=False, truncation=True, max_length=tokenizer.max_len_single_sentence) |
| 52 | + input_ids = [cls_token_id] + text_ids + [sep_token_id] # construct input token ids |
| 53 | + ref_input_ids = [cls_token_id] + [ref_token_id] * len(text_ids) + [sep_token_id] # construct reference token ids |
| 54 | + |
| 55 | + return torch.tensor([input_ids], device=device), torch.tensor([ref_input_ids], device=device) |
| 56 | + |
| 57 | +def construct_input_ref_pos_id_pair(input_ids, device): |
| 58 | + global model |
| 59 | + seq_length = input_ids.size(1) |
| 60 | + position_ids = model.bert.embeddings.position_ids[:,0:seq_length].to(device) |
| 61 | + ref_position_ids = model.bert.embeddings.position_ids[:,0:seq_length].to(device) |
| 62 | + |
| 63 | + return position_ids, ref_position_ids |
| 64 | + |
| 65 | +def construct_input_ref_token_type_pair(input_ids, device): |
| 66 | + seq_len = input_ids.size(1) |
| 67 | + token_type_ids = torch.tensor([[0] * seq_len], dtype=torch.long, device=device) |
| 68 | + ref_token_type_ids = torch.zeros_like(token_type_ids, dtype=torch.long, device=device) |
| 69 | + return token_type_ids, ref_token_type_ids |
| 70 | + |
| 71 | +def construct_attention_mask(input_ids): |
| 72 | + return torch.ones_like(input_ids) |
| 73 | + |
| 74 | +def get_word_embeddings(): |
| 75 | + global model |
| 76 | + return model.bert.embeddings.word_embeddings.weight |
| 77 | + |
| 78 | +def construct_word_embedding(model, input_ids): |
| 79 | + return model.bert.embeddings.word_embeddings(input_ids) |
| 80 | + |
| 81 | +def construct_position_embedding(model, position_ids): |
| 82 | + return model.bert.embeddings.position_embeddings(position_ids) |
| 83 | + |
| 84 | +def construct_type_embedding(model, type_ids): |
| 85 | + return model.bert.embeddings.token_type_embeddings(type_ids) |
| 86 | + |
| 87 | +def construct_sub_embedding(model, input_ids, ref_input_ids, position_ids, ref_position_ids, type_ids, ref_type_ids): |
| 88 | + input_embeddings = construct_word_embedding(model, input_ids) |
| 89 | + ref_input_embeddings = construct_word_embedding(model, ref_input_ids) |
| 90 | + input_position_embeddings = construct_position_embedding(model, position_ids) |
| 91 | + ref_input_position_embeddings = construct_position_embedding(model, ref_position_ids) |
| 92 | + input_type_embeddings = construct_type_embedding(model, type_ids) |
| 93 | + ref_input_type_embeddings = construct_type_embedding(model, ref_type_ids) |
| 94 | + |
| 95 | + return (input_embeddings, ref_input_embeddings), \ |
| 96 | + (input_position_embeddings, ref_input_position_embeddings), \ |
| 97 | + (input_type_embeddings, ref_input_type_embeddings) |
| 98 | + |
| 99 | +def get_base_token_emb(device): |
| 100 | + global model |
| 101 | + return construct_word_embedding(model, torch.tensor([tokenizer.pad_token_id], device=device)) |
| 102 | + |
| 103 | +def get_tokens(text_ids): |
| 104 | + global tokenizer |
| 105 | + return tokenizer.convert_ids_to_tokens(text_ids.squeeze()) |
| 106 | + |
| 107 | +def get_inputs(text, device): |
| 108 | + global model, tokenizer |
| 109 | + ref_token_id = tokenizer.pad_token_id |
| 110 | + sep_token_id = tokenizer.sep_token_id |
| 111 | + cls_token_id = tokenizer.cls_token_id |
| 112 | + |
| 113 | + input_ids, ref_input_ids = construct_input_ref_pair(tokenizer, text, ref_token_id, sep_token_id, cls_token_id, device) |
| 114 | + position_ids, ref_position_ids = construct_input_ref_pos_id_pair(input_ids, device) |
| 115 | + type_ids, ref_type_ids = construct_input_ref_token_type_pair(input_ids, device) |
| 116 | + attention_mask = construct_attention_mask(input_ids) |
| 117 | + |
| 118 | + (input_embed, ref_input_embed), (position_embed, ref_position_embed), (type_embed, ref_type_embed) = \ |
| 119 | + construct_sub_embedding(model, input_ids, ref_input_ids, position_ids, ref_position_ids, type_ids, ref_type_ids) |
| 120 | + |
| 121 | + return [input_ids, ref_input_ids, input_embed, ref_input_embed, position_embed, ref_position_embed, type_embed, ref_type_embed, attention_mask] |
0 commit comments