-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
295 lines (264 loc) · 9.58 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
from scripts.util import *
####### SELECT CONFIG FILE HERE #######
configfile: "config/config_NNNlib2b_Nov11.yaml"
#######################################
# --- Define Global Variables --- #
datadir = config['datadir']
expdir = os.path.normpath(datadir + '/../') + '/'
sequencingResult = datadir + 'aligned/' + config["sequencingResult"]
# hardcoded tile numbers
TILES = ['tile%03d'%i for i in range(1,19)]
TILES_NO_ZERO_PAD = ['tile%d'%i for i in range(1,19)]
# == Comment this out after sequencing but before array experiment ==
assert config["processingType"] in ['pre-array', 'post-array']
if config["processingType"] == "pre-array":
fluor_files = []
requested_output = ["%s_STATS.csv" % sequencingResult.strip('.CPseq'),
expand(expdir + "fig/fiducial/{tile}_Bottom_fiducial.png", tile=TILES)]
elif config["processingType"] == "post-array":
fluor_files = get_fluor_names_from_mapfile(config["mapfile"], config["tifdir"], config["fluordir"])
requested_output = [fluor_files, config["seriesdir"]]
#wildcard_constraints:
# --- Define Required Output --- #
rule all:
input:
requested_output
#"%s_STATS.csv" % sequencingResult.strip('.CPseq'),
#config["sequencingResult"]#, #== Align sequencing data ==
#expand(expdir + "fig/fiducial/{tile}_Bottom_fiducial.png", tile=TILES) #== Plot fiducials ==
#expand(datadir + "filtered_tiles_libregion/ALL_{tile}_Bottom_filtered.CPseq", tile=TILES), #== Filtered libregions ==
#fluor_files
#config["seriesdir"]
#datadir + "fluor/Green16_25/NNNlib2b_DNA_tile1_green_600ms_2011.10.22-16.51.13.953.CPfluor" #== Example image quantification ==
# --- Rules --- #
## unzip_fastq: in case the fastq files were not unzipped
rule unzip_fastq:
input:
r1 = config['fastq']['read1'] + ".gz",
r2 = config['fastq']['read2'] + ".gz"
output:
r1 = config['fastq']['read1'],
r2 = config['fastq']['read2']
threads:
1
params:
cluster_time = "02:00:00"
shell:
"gunzip {input.r1} {input.r2}"
## run_FLASH: align paired ends with FLASH
rule run_FLASH:
input:
r1 = config['fastq']['read1'],
r2 = config['fastq']['read2']
output:
datadir + "FLASH_output/out.extendedFrags.fastq"
params:
outdir = datadir + "FLASH_output"
threads:
1
shell:
"""
cd {params[outdir]}
{config[FLASHdir]}/FLASH-1.2.11/flash {input.r1} {input.r2}
"""
rule convert_FLASH_to_CPseq:
input:
datadir + "FLASH_output/out.extendedFrags.fastq"
output:
datadir + "paired_reads/ConsensusPairedReads.CPseq"
threads:
1
conda:
"envs/align.yml"
shell:
"python scripts/convertFLASH_OutputToCPseq.py {input} {output}"
rule align_consensus_read_to_library:
input:
reads = datadir + "paired_reads/ConsensusPairedReads.CPseq",
reference = config["referenceLibrary"],
scoring_matrix = os.path.join(os.getcwd(), "data/reference/NUC.4.4") # need this to check existence of the matrix file
output:
sequencingResult
threads:
6
params:
fiveprimeRegion = config["refSeqContext"]["fiveprime"],
threeprimeRegion = config["refSeqContext"]["threeprime"],
cluster_memory = "90G",
cluster_time = "24:00:00"
conda:
"envs/align.yml"
shell:
"""
python scripts/matchConsensusReadsToLibrary.py --beam {config[alignBeam]} {input.reads} --library {input.reference} -o {output} --scoringMatrix {input.scoring_matrix} --fiveprimeRegion {params.fiveprimeRegion} --threeprimeRegion {params.threeprimeRegion}
"""
rule get_stats:
input:
sequencingResult
output:
"%s_STATS.csv" % sequencingResult.strip('.CPseq')
threads:
1
conda:
"envs/align.yml"
shell:
"python scripts/get_stats.py {input} {output}"
rule merge_fastqs_to_CPseq:
input:
r1 = config['fastq']['read1'],
r2 = config['fastq']['read2']
output:
datadir + "sequence/ALL.CPseq"
params:
cluster_memory = "10G",
cluster_time = "10:00:00"
threads:
2
conda:
"envs/ame.yml"
shell:
"""
python scripts/array_tools/CPscripts/mergeFastqReadsToCPseq.py -r1 {input.r1} -r2 {input.r2} -o {output}
"""
rule split_CPseq:
input:
datadir + "sequence/ALL.CPseq"
output:
#directory(datadir + "tiles/")
expand(datadir + "tiles/ALL_{tile}_Bottom.CPseq", tile=TILES)
threads:
1
params:
cluster_memory = "1G",
cluster_time = "5:00:00",
tiledir = datadir + "tiles/"
conda:
"envs/ame.yml"
shell:
"""
python scripts/array_tools/CPscripts/splitCPseqIntoTiles.py -o {params.tiledir} -s bottom {input}
"""
rule filter_tiles:
input:
expand(datadir + "tiles/ALL_{tile}_Bottom.CPseq", tile=TILES),
config["FIDfilter"]
output:
expand(datadir + "filtered_tiles/ALL_{tile}_Bottom_filtered.CPseq", tile=TILES)
params:
tiledir = datadir + "tiles/",
filteredtiledir = datadir + "filtered_tiles/",
cluster_memory = "16G",
cluster_time = "5:00:00"
conda:
"envs/ame.yml"
#envmodules:
# "matlab"
threads:
8
shell:
"""
module load matlab
export MATLABPATH=/share/PI/wjg/lab/array_tools/CPscripts/:/share/PI/wjg/lab/array_tools/CPlibs/
python scripts/array_tools/CPscripts/alignmentFilterMultiple.py -rd {params.tiledir} -f {config[FIDfilter]} -od {params.filteredtiledir} -gv /share/PI/wjg/lab/array_tools -n 18
"""
rule filter_tiles_libregion:
input:
expand(datadir + "tiles/ALL_{tile}_Bottom.CPseq", tile=TILES),
config["LibRegionFilter"]
output:
expand(datadir + "filtered_tiles_libregion/ALL_{tile}_Bottom_filtered.CPseq", tile=TILES)
params:
tiledir = datadir + "tiles/",
filteredtiledir = datadir + "filtered_tiles_libregion/",
cluster_memory = "16G",
cluster_time = "5:00:00"
conda:
"envs/ame.yml"
threads:
8
shell:
"""
module load matlab
export MATLABPATH=scripts/array_tools/CPscripts/:scripts/array_tools/CPlibs/
python scripts/array_tools/CPscripts/alignmentFilterMultiple.py -rd {params.tiledir} -f {config[LibRegionFilter]} -od {params.filteredtiledir} -gv scripts/array_tools -n 18
"""
rule plot_fiducials:
input:
expand(datadir + "filtered_tiles/ALL_{tile}_Bottom_filtered.CPseq", tile=TILES)
output:
expand(expdir + "fig/fiducial/{tile}_Bottom_fiducial.png", tile=TILES)
conda:
"envs/plotting.yml"
params:
cluster_memory = "4G"
threads:
1
script:
"scripts/plotSeqs.py"
## quantify_images: quantify intensities in tif and write to CPfluor
## snakemake checks one tile per condition as input/output and submit one job per condition
rule quantify_images:
input:
image = config["tifdir"] + "{condition}/%s_{tile}_{channel}_600ms_{timestamp}.tif" % config["experimentName"],
libregion = expand(datadir + "filtered_tiles_libregion/ALL_{tile}_Bottom_filtered.CPseq", tile=TILES)
output:
CPfluor = datadir + "fluor/{condition}/%s_{tile}_{channel}_600ms_{timestamp}.CPfluor" % config["experimentName"]#,
#roff = expand(datadir + "roff/{condition}/%s_{tile}_{channel}_600ms_{timestamp}.roff")
params:
image_dir = config["tifdir"] + "{condition}/",
seq_dir = datadir + "filtered_tiles_libregion/",
fluor_dir = config["fluordir"] + "{condition}/",
roff_dir = datadir + "roff/{condition}/",
reg_subset = "LibRegion",
log_dir = expdir + "log/quantify_image_{condition}.log",
num_cores = "18",
data_scaling = "MiSeq_to_TIRFStation1",
cluster_memory = "40G",
cluster_time = "15:00:00"
threads:
18
conda:
"envs/ame.yml"
shell:
"""
module load matlab
export MATLABPATH=scripts/array_tools/CPscripts:scripts/array_tools/CPlibs
python scripts/array_tools/CPscripts/quantifyTilesDownstream.py -id {params.image_dir} -ftd {params.seq_dir} -fd {params.fluor_dir} -rod {params.roff_dir} -n {params.num_cores} -rs {params.reg_subset} -sf {params.data_scaling} -gv scripts/array_tools/
"""
## write_old_mapfile: convert and prepare mapfile for the combine_signal step
rule write_old_mapfile:
input:
config['mapfile']
output:
oldmapfile = datadir + 'tmp/' + config["experimentName"] + '.map'
params:
fluordir = config["fluordir"],
cluster_memory = "500M",
cluster_time = "0:15:00"
threads:
1
conda:
"envs/py36.yml"
shell:
"python scripts/writeOldMapfile.py {params.fluordir} {config[mapfile]} {output.oldmapfile}"
## combine_signal: Integrate and combine CPfluor files of different conditions into a single CPseries file per tile
rule combine_signal:
input:
fluorfiles = fluor_files,
oldmapfile = datadir + 'tmp/' + config["experimentName"] + '.map',
libdata = config["sequencingResult"]
output:
directory(config["seriesdir"])
params:
cluster_memory = "80G",
cluster_time = "10:00:00",
num_cores = "6"
threads:
6
conda:
"envs/py36.yml"
shell:
"""
python scripts/array_tools/bin_py3/processData.py -mf {input.oldmapfile} -od {output} --appendLibData {input.libdata} --num_cores {params.num_cores}
"""