-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
51 lines (38 loc) · 1.74 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from flask import Flask, request, jsonify, render_template, url_for
import pickle
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
df = pd.read_csv("Data/MY2019 Fuel Consumption Ratings.csv")
# Label Encoding
le_make = LabelEncoder()
df['Make'] = le_make.fit_transform(df['Make'])
le_fuel_type = LabelEncoder()
df['Fuel_Type'] = le_fuel_type.fit_transform(df['Fuel_Type'])
# Converting Pandas DataFrame into Numpy array
X = df[['Engine_Size (L)', 'Make', 'Fuel_Type', 'Cylinders', 'Fuel_Consumption_City', 'Fuel_Consumption_Hwy']] .values
y = df[['CO2_Emissions']] .values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.25, random_state= 0)
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
engine = request.form['engine']
make = request.form['make']
fuel = request.form['fuel']
cylinders = request.form['cylinders']
Fuel_Consumption_City = request.form['Fuel_Consumption_City']
Fuel_Consumption_Hwy = request.form['Fuel_Consumption_Hwy']
x1 = [engine, make, fuel, cylinders, Fuel_Consumption_City, Fuel_Consumption_Hwy]
df = pd.DataFrame(data=[x1], columns=['Engine_Size (L)', 'Make', 'Fuel_Type', 'Cylinders', 'Fuel_Consumption_City', 'Fuel_Consumption_Hwy'])
df['Make'] = le_make.transform(df['Make'])
df['Fuel_Type'] = le_fuel_type.transform(df['Fuel_Type'])
X = df.iloc[:, :6].values
ans = model.predict(X)
output = ans
return render_template('index.html', prediction_text='CO2 Emission: {}'.format(output))
if __name__ == 'main':
app.run(debug=False)