-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
840 lines (721 loc) · 40 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
#!/usr/bin/env python3
import os
import time
import shutil
import numpy
import scipy
import scipy.stats
import random
import pytz
from datetime import datetime
tz = pytz.timezone('Asia/Saigon')
import torch
import torch.autograd as autograd
from torch.autograd import Variable
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transf
import torchvision.models as models
import torchvision.utils as vutils
import torch.nn.utils.spectral_norm as spectral_norm
from torchvision.utils import save_image
import torch.nn.functional as F
from IPython.display import Image
to_img = transf.ToPILImage()
import math
torch.utils.backcompat.broadcast_warning.enabled = True
import metric_is
import metric_fid
# parameters
import argparse
def strToBool(str):
return str.lower() in ('true', 'yes', 'on', 't', '1')
parser = argparse.ArgumentParser()
parser.register('type', 'bool', strToBool)
parser.add_argument('--dataset', default='cifar10', help='cifar10, mnist, stl10, cat')
parser.add_argument('--method', default='s', help='s, rs, ras, ls, rals, hinge, rahinge, rmcos')
parser.add_argument('--dir_dataset', default='./dataset/')
parser.add_argument('--dir_output', default='./output/')
parser.add_argument('--n_iter', type=int, default=200000, help='Number of iteration cycles')
parser.add_argument('--save_every', type=int, default=10000, help='Generate images after x iterations')
parser.add_argument('--valid_images', type=int, default=10000, help='Number of images needed to be generated')
parser.add_argument('--m', type=float, default=0.35)
parser.add_argument('--s', type=int, default=10)
parser.add_argument('--image_size', type=int, default=32)
parser.add_argument('--batch_size', type=int, default=32) # DCGAN paper original value used 128 (32 is generally better to prevent vanishing gradients with SGAN and LSGAN, not important with relativistic GANs)
parser.add_argument('--n_colors', type=int, default=3)
parser.add_argument('--z_size', type=int, default=128)
parser.add_argument('--G_h_size', type=int, default=128, help='Number of hidden nodes in the Generator. Used only in arch=0. Too small leads to bad results, too big blows up the GPU RAM.') # DCGAN paper original value
parser.add_argument('--D_h_size', type=int, default=128, help='Number of hidden nodes in the Discriminator. Used only in arch=0. Too small leads to bad results, too big blows up the GPU RAM.') # DCGAN paper original value
parser.add_argument('--lr_D', type=float, default=.0002, help='Discriminator learning rate')
parser.add_argument('--lr_G', type=float, default=.0002, help='Generator learning rate')
parser.add_argument('--beta1', type=float, default=0.5, help='Adam betas[0], DCGAN paper recommends .50 instead of the usual .90')
parser.add_argument('--beta2', type=float, default=0.999, help='Adam betas[1]')
parser.add_argument('--decay', type=float, default=0, help='Decay to apply to lr each cycle. decay^n_iter gives the final lr. Ex: .00002 will lead to .13 of lr after 100k cycles')
parser.add_argument('--SELU', type='bool', default=False, help='Using scaled exponential linear units (SELU) which are self-normalizing instead of ReLU with BatchNorm. Used only in arch=0. This improves stability.')
parser.add_argument("--NN_conv", type='bool', default=False, help="This approach minimize checkerboard artifacts during training. Used only by arch=0. Uses nearest-neighbor resized convolutions instead of strided convolutions (https://distill.pub/2016/deconv-checkerboard/ and github.com/abhiskk/fast-neural-style).")
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--n_gpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--Diters', type=int, default=1, help='Number of iterations of D')
parser.add_argument('--Giters', type=int, default=1, help='Number of iterations of G.')
parser.add_argument('--penalty', type=float, default=10, help='Gradient penalty parameter for WGAN-GP')
parser.add_argument('--spectral', type='bool', default=True, help='If True, use spectral normalization to make the discriminator Lipschitz. This Will also remove batch norm in the discriminator.')
parser.add_argument('--spectral_G', type='bool', default=False, help='If True, use spectral normalization to make the generator Lipschitz (Generally only D is spectral, not G). This Will also remove batch norm in the discriminator.')
parser.add_argument('--weight_decay', type=float, default=0, help='L2 regularization weight. Helps convergence but leads to artifacts in images, not recommended.')
parser.add_argument('--no_batch_norm_G', type='bool', default=False, help='If True, no batch norm in G.')
parser.add_argument('--no_batch_norm_D', type='bool', default=False, help='If True, no batch norm in D.')
parser.add_argument('--Tanh_GD', type='bool', default=False, help='If True, tanh everywhere.')
parser.add_argument('--grad_penalty', type='bool', default=False, help='If True, use gradient penalty of WGAN-GP but with whichever loss_D chosen. No need to set this true with WGAN-GP.')
parser.add_argument('--arch', type=int, default=0, help='1: standard CNN for 32x32 images from the Spectral GAN paper, 0:DCGAN with number of layers adjusted based on image size. Some options may be ignored by some architectures.')
param = parser.parse_args()
# additional param
param.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
param.log = 'log_' + param.dataset + '.txt'
if param.dataset == 'cat':
param.path_fid_stats = os.path.join(param.dir_dataset, 'cat/all')
param.dir_input = os.path.join(param.dir_dataset, 'cat/classes')
param.dir_inception = os.path.join(param.dir_dataset, 'others')
elif param.dataset in ['stl10']:
param.path_fid_stats = os.path.join(param.dir_dataset, param.dataset)
param.dir_input = os.path.join(param.dir_dataset, 'others')
param.dir_inception = os.path.join(param.dir_dataset, 'others')
elif param.dataset in ['cifar10']:
param.path_fid_stats = os.path.join(param.dir_dataset, 'others/fid_stats_cifar10_train.npz')
param.dir_input = os.path.join(param.dir_dataset, 'others')
param.dir_inception = os.path.join(param.dir_dataset, 'others')
elif param.dataset in ['mnist']:
param.path_fid_stats = os.path.join(param.dir_dataset, 'mnist/all')
param.dir_input = os.path.join(param.dir_dataset, 'mnist/classes')
param.dir_inception = os.path.join(param.dir_dataset, 'others')
if param.method == 'rmcos':
param.dir_output_model = os.path.join(param.dir_output, param.dataset, param.method + '_m' + str(param.m) + '_s' + str(param.s), 'model')
param.dir_output_image = os.path.join(param.dir_output, param.dataset, param.method + '_m' + str(param.m) + '_s' + str(param.s), 'image')
else:
param.dir_output_model = os.path.join(param.dir_output, param.dataset, param.method, 'model')
param.dir_output_image = os.path.join(param.dir_output, param.dataset, param.method, 'image')
if param.dataset in ['cat']:
param.arch = 0
elif param.dataset in ['cifar10', 'mnist', 'stl10']:
param.arch = 1
if param.dataset in ['cifar10', 'mnist']:
param.image_size = 32
elif param.dataset in ['stl10']:
param.image_size = 48
elif param.dataset in ['cat']:
param.image_size = 64
def printBoth(filename, args):
date_time = datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S ')
# write log
fo = open(filename, "a")
fo.write(date_time + args + '\n')
fo.close()
# print
print(date_time + args)
def create_dir(directory):
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs(directory)
# models
if param.arch == 0: # for cat
# DCGAN generator
class DCGAN_G(torch.nn.Module):
def __init__(self):
super(DCGAN_G, self).__init__()
main = torch.nn.Sequential()
# We need to know how many layers we will use at the beginning
mult = param.image_size // 8
### Start block
# Z_size random numbers
if param.spectral_G:
main.add_module('Start-SpectralConvTranspose2d', torch.nn.utils.spectral_norm(torch.nn.ConvTranspose2d(param.z_size, param.G_h_size * mult, kernel_size=4, stride=1, padding=0, bias=False)))
else:
main.add_module('Start-ConvTranspose2d', torch.nn.ConvTranspose2d(param.z_size, param.G_h_size * mult, kernel_size=4, stride=1, padding=0, bias=False))
if param.SELU:
main.add_module('Start-SELU', torch.nn.SELU(inplace=True))
else:
if not param.no_batch_norm_G and not param.spectral_G:
main.add_module('Start-BatchNorm2d', torch.nn.BatchNorm2d(param.G_h_size * mult))
if param.Tanh_GD:
main.add_module('Start-Tanh', torch.nn.Tanh())
else:
main.add_module('Start-ReLU', torch.nn.ReLU())
# Size = (G_h_size * mult) x 4 x 4
### Middle block (Done until we reach ? x image_size/2 x image_size/2)
i = 1
while mult > 1:
if param.NN_conv:
main.add_module('Middle-UpSample [%d]' % i, torch.nn.Upsample(scale_factor=2))
if param.spectral_G:
main.add_module('Middle-SpectralConv2d [%d]' % i, torch.nn.utils.spectral_norm(torch.nn.Conv2d(param.G_h_size * mult, param.G_h_size * (mult//2), kernel_size=3, stride=1, padding=1)))
else:
main.add_module('Middle-Conv2d [%d]' % i, torch.nn.Conv2d(param.G_h_size * mult, param.G_h_size * (mult//2), kernel_size=3, stride=1, padding=1))
else:
if param.spectral_G:
main.add_module('Middle-SpectralConvTranspose2d [%d]' % i, torch.nn.utils.spectral_norm(torch.nn.ConvTranspose2d(param.G_h_size * mult, param.G_h_size * (mult//2), kernel_size=4, stride=2, padding=1, bias=False)))
else:
main.add_module('Middle-ConvTranspose2d [%d]' % i, torch.nn.ConvTranspose2d(param.G_h_size * mult, param.G_h_size * (mult//2), kernel_size=4, stride=2, padding=1, bias=False))
if param.SELU:
main.add_module('Middle-SELU [%d]' % i, torch.nn.SELU(inplace=True))
else:
if not param.no_batch_norm_G and not param.spectral_G:
main.add_module('Middle-BatchNorm2d [%d]' % i, torch.nn.BatchNorm2d(param.G_h_size * (mult//2)))
if param.Tanh_GD:
main.add_module('Middle-Tanh [%d]' % i, torch.nn.Tanh())
else:
main.add_module('Middle-ReLU [%d]' % i, torch.nn.ReLU())
# Size = (G_h_size * (mult/(2*i))) x 8 x 8
mult = mult // 2
i += 1
### End block
# Size = G_h_size x image_size/2 x image_size/2
if param.NN_conv:
main.add_module('End-UpSample', torch.nn.Upsample(scale_factor=2))
if param.spectral_G:
main.add_module('End-SpectralConv2d', torch.nn.utils.spectral_norm(torch.nn.Conv2d(param.G_h_size, param.n_colors, kernel_size=3, stride=1, padding=1)))
else:
main.add_module('End-Conv2d', torch.nn.Conv2d(param.G_h_size, param.n_colors, kernel_size=3, stride=1, padding=1))
else:
if param.spectral_G:
main.add_module('End-SpectralConvTranspose2d', torch.nn.utils.spectral_norm(torch.nn.ConvTranspose2d(param.G_h_size, param.n_colors, kernel_size=4, stride=2, padding=1, bias=False)))
else:
main.add_module('End-ConvTranspose2d', torch.nn.ConvTranspose2d(param.G_h_size, param.n_colors, kernel_size=4, stride=2, padding=1, bias=False))
main.add_module('End-Tanh', torch.nn.Tanh())
# Size = n_colors x image_size x image_size
self.main = main
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and param.n_gpu > 1:
output = torch.nn.parallel.data_parallel(self.main, input, range(param.n_gpu))
else:
output = self.main(input)
return output
# DCGAN discriminator (using somewhat the reverse of the generator)
class DCGAN_D(torch.nn.Module):
def __init__(self):
super(DCGAN_D, self).__init__()
main = torch.nn.Sequential()
### Start block
# Size = n_colors x image_size x image_size
if param.spectral:
main.add_module('Start-SpectralConv2d', torch.nn.utils.spectral_norm(torch.nn.Conv2d(param.n_colors, param.D_h_size, kernel_size=4, stride=2, padding=1, bias=False)))
else:
main.add_module('Start-Conv2d', torch.nn.Conv2d(param.n_colors, param.D_h_size, kernel_size=4, stride=2, padding=1, bias=False))
if param.SELU:
main.add_module('Start-SELU', torch.nn.SELU(inplace=True))
else:
if param.Tanh_GD:
main.add_module('Start-Tanh', torch.nn.Tanh())
else:
main.add_module('Start-LeakyReLU', torch.nn.LeakyReLU(0.2, inplace=True))
image_size_new = param.image_size // 2
# Size = D_h_size x image_size/2 x image_size/2
### Middle block (Done until we reach ? x 4 x 4)
mult = 1
i = 0
while image_size_new > 4:
if param.spectral:
main.add_module('Middle-SpectralConv2d [%d]' % i, torch.nn.utils.spectral_norm(torch.nn.Conv2d(param.D_h_size * mult, param.D_h_size * (2*mult), kernel_size=4, stride=2, padding=1, bias=False)))
else:
main.add_module('Middle-Conv2d [%d]' % i, torch.nn.Conv2d(param.D_h_size * mult, param.D_h_size * (2*mult), kernel_size=4, stride=2, padding=1, bias=False))
if param.SELU:
main.add_module('Middle-SELU [%d]' % i, torch.nn.SELU(inplace=True))
else:
if not param.no_batch_norm_D and not param.spectral:
main.add_module('Middle-BatchNorm2d [%d]' % i, torch.nn.BatchNorm2d(param.D_h_size * (2*mult)))
if param.Tanh_GD:
main.add_module('Start-Tanh [%d]' % i, torch.nn.Tanh())
else:
main.add_module('Middle-LeakyReLU [%d]' % i, torch.nn.LeakyReLU(0.2, inplace=True))
# Size = (D_h_size*(2*i)) x image_size/(2*i) x image_size/(2*i)
image_size_new = image_size_new // 2
mult *= 2
i += 1
self.main = main
self.sig = torch.nn.Sigmoid()
if param.method == 'rmcos':
#self.fc = torch.nn.Linear(1024 * 4 * 4, 1024)
self.weight = torch.nn.Parameter(torch.FloatTensor(1, 1024))
torch.nn.init.xavier_uniform_(self.weight)
else:
self.dense = torch.nn.Linear(1024, 1)
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and param.n_gpu > 1:
output = torch.nn.parallel.data_parallel(self.main, input, range(param.n_gpu))
else:
if param.method == 'rmcos':
output = self.main(input)
output = torch.sum(output, dim=(2,3))
output = F.linear(F.normalize(output), F.normalize(self.weight)).view(-1)
else:
#output = self.main(input)
output = self.main(input)
output = torch.sum(output, dim=(2,3))
output = self.dense(output).view(-1)
if param.method == 's':
output = self.sig(output)
return output.view(-1)
if param.arch == 1:# for cifar10, mnist, stl
class DCGAN_G(torch.nn.Module):
def __init__(self, h=4, w=4):
super(DCGAN_G, self).__init__()
self.h = h
self.w = w
self.dense = torch.nn.Linear(param.z_size, 512 * self.h * self.w)
if param.spectral_G:
model = [
spectral_norm(torch.nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True))]
model += [torch.nn.ReLU(True),
spectral_norm(
torch.nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True))]
model += [torch.nn.ReLU(True),
spectral_norm(
torch.nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=True))]
model += [torch.nn.ReLU(True),
spectral_norm(
torch.nn.Conv2d(64, param.n_colors, kernel_size=3, stride=1, padding=1, bias=True)),
torch.nn.Tanh()]
else:
model = [torch.nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
if not param.no_batch_norm_G:
model += [torch.nn.BatchNorm2d(256)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.ReLU(True)]
model += [torch.nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True)]
if not param.no_batch_norm_G:
model += [torch.nn.BatchNorm2d(128)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.ReLU(True)]
model += [torch.nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=True)]
if not param.no_batch_norm_G:
model += [torch.nn.BatchNorm2d(64)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.ReLU(True)]
model += [torch.nn.Conv2d(64, param.n_colors, kernel_size=3, stride=1, padding=1, bias=True),
torch.nn.Tanh()]
self.model = torch.nn.Sequential(*model)
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and param.n_gpu > 1:
output = torch.nn.parallel.data_parallel(
self.model(self.dense(input.view(-1, param.z_size)).view(-1, 512, self.h, self.w)), input, range(param.n_gpu))
else:
output = self.model(self.dense(input.view(-1, param.z_size)).view(-1, 512, self.h, self.w))
# print(output.size())
return output
class DCGAN_D(torch.nn.Module):
def __init__(self, h=4, w=4):
super(DCGAN_D, self).__init__()
self.h = h
self.w = w
if param.spectral:
model = [
spectral_norm(torch.nn.Conv2d(param.n_colors, 64, kernel_size=3, stride=1, padding=1, bias=True)),
torch.nn.LeakyReLU(0.1, inplace=True),
spectral_norm(torch.nn.Conv2d(64, 64, kernel_size=4, stride=2, padding=1, bias=True)),
torch.nn.LeakyReLU(0.1, inplace=True),
spectral_norm(torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True)),
torch.nn.LeakyReLU(0.1, inplace=True),
spectral_norm(torch.nn.Conv2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True)),
torch.nn.LeakyReLU(0.1, inplace=True),
spectral_norm(torch.nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True)),
torch.nn.LeakyReLU(0.1, inplace=True),
spectral_norm(torch.nn.Conv2d(256, 256, kernel_size=4, stride=2, padding=1, bias=True)),
torch.nn.LeakyReLU(0.1, inplace=True),
spectral_norm(torch.nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True)),
torch.nn.LeakyReLU(0.1, inplace=True)]
else:
model = [torch.nn.Conv2d(param.n_colors, 64, kernel_size=3, stride=1, padding=1, bias=True)]
if not param.no_batch_norm_D:
model += [torch.nn.BatchNorm2d(64)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.LeakyReLU(0.1, inplace=True)]
model += [torch.nn.Conv2d(64, 64, kernel_size=4, stride=2, padding=1, bias=True)]
if not param.no_batch_norm_D:
model += [torch.nn.BatchNorm2d(64)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.LeakyReLU(0.1, inplace=True)]
model += [torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True)]
if not param.no_batch_norm_D:
model += [torch.nn.BatchNorm2d(128)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.LeakyReLU(0.1, inplace=True)]
model += [torch.nn.Conv2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True)]
if not param.no_batch_norm_D:
model += [torch.nn.BatchNorm2d(128)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.LeakyReLU(0.1, inplace=True)]
model += [torch.nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True)]
if not param.no_batch_norm_D:
model += [torch.nn.BatchNorm2d(256)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.LeakyReLU(0.1, inplace=True)]
model += [torch.nn.Conv2d(256, 256, kernel_size=4, stride=2, padding=1, bias=True)]
if not param.no_batch_norm_D:
model += [torch.nn.BatchNorm2d(256)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.LeakyReLU(0.1, inplace=True)]
model += [torch.nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True)]
if param.Tanh_GD:
model += [torch.nn.Tanh()]
else:
model += [torch.nn.LeakyReLU(0.1, inplace=True)]
self.model = torch.nn.Sequential(*model)
self.sig = torch.nn.Sigmoid()
if param.method == 'rmcos':
#self.dense = torch.nn.Linear(512 * h * w, 512)
#self.weight = torch.nn.Parameter(torch.FloatTensor(1, 512 * h * w))
self.weight = torch.nn.Parameter(torch.FloatTensor(1, 512))
torch.nn.init.xavier_uniform_(self.weight)
else:
#self.dense = torch.nn.Linear(512 * h * w, 1)
self.dense = torch.nn.Linear(512, 1)
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and param.n_gpu > 1:
output = torch.nn.parallel.data_parallel(self.dense(self.model(input).view(-1, 512 * self.h * self.w)).view(-1),
input, range(param.n_gpu))
else:
if param.method == 'rmcos':
output = self.model(input)
output = torch.sum(output, dim=(2,3))
output = F.linear(F.normalize(output), F.normalize(self.weight)).view(-1)
#output = self.dense(self.model(input).view(-1, 512 * h * w))
#output = F.linear(F.normalize(output), F.normalize(self.weight)).view(-1)
#output = self.model(input).view(-1, 512 * h * w)
#output = F.linear(F.normalize(output), F.normalize(self.weight)).view(-1)
else:
output = self.model(input)
output = torch.sum(output, dim=(2,3))
output = self.dense(output).view(-1)
#output = self.dense(self.model(input).view(-1, 512 * h * w)).view(-1)
if param.method == 's':
output = self.sig(output)
return output
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def truncated_normal(size, threshold=2.0, dtype=torch.float32, device='cpu'):
if threshold is not None:
x = scipy.stats.truncnorm.rvs(-threshold, threshold, size=size)
x = torch.from_numpy(x).to(device, dtype)
else:
x = scipy.stats.norm.rvs(size=size)
x = torch.from_numpy(x).to(device, dtype)
return x
def validate_fake_images(G, dir_output, device='cuda', valid_images=10000):
#truncations = [1.0, 2.0, 3.0, None]
truncations = [None]
batch_size = 100
fids = []
inception_scores = []
for truncation in truncations:
# create output dir
dir_output_ = os.path.join(dir_output, str(truncation))
create_dir(dir_output_)
# generate images
for batch in range(int(valid_images / batch_size)):
z = truncated_normal((batch_size, param.z_size, 1, 1), threshold=truncation, dtype=torch.float32, device=device)
with torch.no_grad():
gen_images = G(z).to('cpu').clone().detach().squeeze(0)
gen_images = gen_images.to('cpu').clone().detach()
gen_images = gen_images * 0.5 + 0.5
for i in range(gen_images.size(0)):
save_image(gen_images[i, :, :, :], os.path.join(dir_output_, '{}_{}.png'.format(batch, i)))
del gen_images
# compute scores
fid = metric_fid.calculate_fid_given_paths([dir_output_, param.path_fid_stats])
inception_score = metric_is.get_inception_score_given_paths(dir_output_)[0]
fids.append(fid)
inception_scores.append(inception_score)
return fids, inception_scores
BCE_stable = torch.nn.BCEWithLogitsLoss().to(param.device, torch.float32)
def calc_advloss_D(real_cos, fake_cos, y, s=10.0, m=0.35):
'''
m: margin
cos(theta) - m
'''
real_phi = real_cos - m
loss = BCE_stable((real_phi - fake_cos)*s, y)
return loss
def calc_advloss_G(real_cos, fake_cos, y, s=10.0, m=0.35):
'''
m: margin
cos(theta) - m
'''
fake_phi = fake_cos - m
loss = BCE_stable((fake_phi - real_cos)*s, y)
return loss
if __name__ == '__main__':
printBoth(param.log, '====================================================')
printBoth(param.log, '====================================================')
printBoth(param.log, 'dataset = {}'.format(param.dataset))
printBoth(param.log, 'method = {}'.format(param.method))
printBoth(param.log, 'valid_images = {}'.format(param.valid_images))
printBoth(param.log, 'dir_input = {}'.format(param.dir_input))
printBoth(param.log, 'path_fid_stats = {}'.format(param.path_fid_stats))
printBoth(param.log, 'dir_inception = {}'.format(param.dir_inception))
printBoth(param.log, 'dir_output_model = {}'.format(param.dir_output_model))
printBoth(param.log, 'dir_output_image = {}'.format(param.dir_output_image))
if param.method == 'rmcos':
printBoth(param.log, 'm = {}'.format(param.m))
printBoth(param.log, 's = {}'.format(param.s))
# create_inception_graph
metric_fid.create_inception_graph(str(param.dir_inception))
metric_is._init_inception()
## clean and create dirs
create_dir(param.dir_output_model)
create_dir(param.dir_output_image)
## cuda
#printBoth(param.log, 'Setting '.format(param.device))
if param.device == 'cuda':
import torch.backends.cudnn as cudnn
cudnn.deterministic = True
cudnn.benchmark = True
## Setting seed
#printBoth(param.log, 'Setting seed')
if param.seed is None:
param.seed = random.randint(1, 10000)
random.seed(param.seed)
numpy.random.seed(param.seed)
torch.manual_seed(param.seed)
if param.device == 'cuda':
torch.cuda.manual_seed_all(param.seed)
printBoth(param.log, 'Random Seed = {}'.format(param.seed))
## Transforming images
#printBoth(param.log, 'Transforming images')
trans = transf.Compose([
transf.Resize((param.image_size, param.image_size)),
# This makes it into [0,1]
transf.ToTensor(),
# This makes it into [-1,1]
transf.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
printBoth(param.log, 'image_size = {}'.format(param.image_size))
## Importing dataset
#printBoth(param.log, 'Importing dataset')
if param.dataset == 'cifar10':
data = dset.CIFAR10(root=param.dir_input, train=True, download=True, transform=trans)
elif param.dataset == 'mnist':
#data = dset.MNIST(root=param.dir_input, train=True, download=True, transform=trans)
data = dset.ImageFolder(root=param.dir_input, transform=trans)
elif param.dataset == 'stl10':
data = dset.STL10(root=param.dir_input, split='train', download=True, transform=trans)
elif param.dataset == 'cat':
data = dset.ImageFolder(root=param.dir_input, transform=trans)
printBoth(param.log, 'dataset len = {}'.format(len(data)))
# Loading data randomly
#printBoth(param.log, 'Loading data randomly')
def generate_random_sample():
while True:
random_indexes = numpy.random.choice(data.__len__(), size=param.batch_size, replace=False)
batch = [data[i][0] for i in random_indexes]
yield torch.stack(batch, 0)
random_sample = generate_random_sample()
## Initialization
#printBoth(param.log, 'Initialization')
if param.arch == 0:
G = DCGAN_G().to(param.device, torch.float32)
D = DCGAN_D().to(param.device, torch.float32)
elif param.arch == 1:
if param.dataset in ['cifar10', 'mnist', 'cat']:
h = w = 4
elif param.dataset in ['stl10']:
h = w = 6
G = DCGAN_G(h,w).to(param.device, torch.float32)
D = DCGAN_D(h,w).to(param.device, torch.float32)
# Initialize weights
#printBoth(param.log, 'Initializing weights')
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
# Estimated variance, must be around 1
m.weight.data.normal_(1.0, 0.02)
# Estimated mean, must be around 0
m.bias.data.fill_(0)
G.apply(weights_init)
D.apply(weights_init)
printBoth(param.log, 'count_parameters of G = {}'.format(count_parameters(G)))
printBoth(param.log, 'count_parameters of D = {}'.format(count_parameters(D)))
# Criterion
#rintBoth(param.log, 'Criterion')
criterion = torch.nn.BCELoss().to(param.device, torch.float32)
#BCE_stable = torch.nn.BCEWithLogitsLoss().to(param.device, torch.float32)
BCE_stable_noreduce = torch.nn.BCEWithLogitsLoss(reduce=False).to(param.device, torch.float32)
# Soon to be variables
x = torch.FloatTensor(param.batch_size, param.n_colors, param.image_size, param.image_size).to(param.device,torch.float32)
x_fake = torch.FloatTensor(param.batch_size, param.n_colors, param.image_size, param.image_size).to(param.device,torch.float32)
y = torch.FloatTensor(param.batch_size).to(param.device, torch.float32)
y2 = torch.FloatTensor(param.batch_size).to(param.device, torch.float32)
# Weighted sum of fake and real image, for gradient penalty
x_both = torch.FloatTensor(param.batch_size, param.n_colors, param.image_size, param.image_size).to(param.device,torch.float32)
z = torch.FloatTensor(param.batch_size, param.z_size, 1, 1).to(param.device, torch.float32)
# Uniform weight
u = torch.FloatTensor(param.batch_size, 1, 1, 1).to(param.device, torch.float32)
# This is to see during training, size and values won't change
z_test = torch.FloatTensor(param.batch_size, param.z_size, 1, 1).normal_(0, 1).to(param.device, torch.float32)
# For the gradients, we need to specify which one we want and want them all
grad_outputs = torch.ones(param.batch_size).to(param.device, torch.float32)
# Now Variables
x = Variable(x)
x_fake = Variable(x_fake)
y = Variable(y)
y2 = Variable(y2)
z = Variable(z)
z_test = Variable(z_test)
# Based on DCGAN paper, they found using betas[0]=.50 better.
# betas[0] represent is the weight given to the previous mean of the gradient
# betas[1] is the weight given to the previous variance of the gradient
optimizerD = torch.optim.Adam(D.parameters(), lr=param.lr_D, betas=(param.beta1, param.beta2),weight_decay=param.weight_decay)
optimizerG = torch.optim.Adam(G.parameters(), lr=param.lr_G, betas=(param.beta1, param.beta2),weight_decay=param.weight_decay)
# exponential weight decay on lr
decayD = torch.optim.lr_scheduler.ExponentialLR(optimizerD, gamma=1 - param.decay)
decayG = torch.optim.lr_scheduler.ExponentialLR(optimizerG, gamma=1 - param.decay)
## Fitting model
printBoth(param.log, 'Training')
fixed_z = truncated_normal((param.valid_images, param.z_size), dtype=torch.float32, device=param.device)
for i in range(param.n_iter+1):
########################
# (1) Update D network #
########################
for p in D.parameters():
p.requires_grad = True
for t in range(param.Diters):
D.zero_grad()
images = random_sample.__next__().to(param.device, torch.float32)
current_batch_size = images.size(0)
x.data.resize_as_(images).copy_(images)
del images
y_pred = D(x)
if param.method in ['s', 'ls', 'hinge']:
# Train with real data
y.data.resize_(current_batch_size).fill_(1)
if param.method == 's':
errD_real = criterion(y_pred, y)
if param.method == 'ls':
errD_real = torch.mean((y_pred - y) ** 2)
if param.method == 'hinge':
errD_real = torch.mean(torch.nn.ReLU()(1.0 - y_pred))
errD_real.backward()
# Train with fake data
z.data.resize_(current_batch_size, param.z_size, 1, 1).normal_(0, 1)
fake = G(z)
x_fake.data.resize_(fake.data.size()).copy_(fake.data)
y.data.resize_(current_batch_size).fill_(0)
y_pred_fake = D(x_fake.detach())
if param.method == 's':
errD_fake = criterion(y_pred_fake, y)
if param.method == 'ls':
errD_fake = torch.mean((y_pred_fake) ** 2)
if param.method == 'hinge':
errD_fake = torch.mean(torch.nn.ReLU()(1.0 + y_pred_fake))
errD_fake.backward()
errD = errD_real + errD_fake
else:
y.data.resize_(current_batch_size).fill_(1)
y2.data.resize_(current_batch_size).fill_(0)
z.data.resize_(current_batch_size, param.z_size, 1, 1).normal_(0, 1)
fake = G(z)
x_fake.data.resize_(fake.data.size()).copy_(fake.data)
y_pred_fake = D(x_fake.detach())
if param.method == 'rs':
errD = BCE_stable(y_pred - y_pred_fake, y)
if param.method == 'ras':
errD = (BCE_stable(y_pred - torch.mean(y_pred_fake), y) + BCE_stable(y_pred_fake - torch.mean(y_pred), y2)) / 2
if param.method == 'rals': # (y_hat-1)^2 + (y_hat+1)^2
errD = (torch.mean((y_pred - torch.mean(y_pred_fake) - y) ** 2) + torch.mean((y_pred_fake - torch.mean(y_pred) + y) ** 2)) / 2
if param.method == 'rahinge':
errD = (torch.mean(torch.nn.ReLU()(1.0 - (y_pred - torch.mean(y_pred_fake)))) +torch.mean(torch.nn.ReLU()(1.0 + (y_pred_fake - torch.mean(y_pred))))) / 2
if param.method == 'rmcos':
errD = calc_advloss_D(y_pred, y_pred_fake, y, s=param.s, m = param.m)
errD_real = errD
errD_fake = errD
errD.backward()
if (param.grad_penalty):
# Gradient penalty
u.data.resize_(current_batch_size, 1, 1, 1)
u.uniform_(0, 1)
x_both = x.data * u + x_fake.data * (1 - u)
if param.device == 'cuda':
x_both = x_both.cuda()
# We only want the gradients with respect to x_both
x_both = Variable(x_both, requires_grad=True)
grad = torch.autograd.grad(outputs=D(x_both), inputs=x_both, grad_outputs=grad_outputs, retain_graph=True,create_graph=True, only_inputs=True)[0]
# We need to norm 3 times (over n_colors x image_size x image_size) to get only a vector of size "batch_size"
grad_penalty = param.penalty * ((grad.norm(2, 1).norm(2, 1).norm(2, 1) - 1) ** 2).mean()
grad_penalty.backward()
optimizerD.step()
########################
# (2) Update G network #
########################
for p in D.parameters():
p.requires_grad = False
for t in range(param.Giters):
G.zero_grad()
y.data.resize_(current_batch_size).fill_(1)
y2.data.resize_(current_batch_size).fill_(0)
z.data.resize_(current_batch_size, param.z_size, 1, 1).normal_(0, 1)
fake = G(z)
y_pred_fake = D(fake)
if param.method not in ['s', 'ls', 'hinge']:
images = random_sample.__next__().to(param.device, torch.float32)
current_batch_size = images.size(0)
x.data.resize_as_(images).copy_(images)
del images
if (param.method == 's'):
errG = criterion(y_pred_fake, y)
if param.method == 'ls':
errG = torch.mean((y_pred_fake - y) ** 2)
if param.method == 'hinge':
errG = -torch.mean(y_pred_fake)
if param.method == 'rs':
y_pred = D(x)
errG = BCE_stable(y_pred_fake - y_pred, y)
if param.method == 'ras':
y_pred = D(x)
# Non-saturating
y2.data.resize_(current_batch_size).fill_(0)
errG = (BCE_stable(y_pred - torch.mean(y_pred_fake), y2) + BCE_stable(y_pred_fake - torch.mean(y_pred),y)) / 2
if param.method == 'rals':
y_pred = D(x)
errG = (torch.mean((y_pred - torch.mean(y_pred_fake) + y) ** 2) + torch.mean((y_pred_fake - torch.mean(y_pred) - y) ** 2)) / 2
if param.method == 'rahinge':
y_pred = D(x)
# Non-saturating
errG = (torch.mean(torch.nn.ReLU()(1.0 + (y_pred - torch.mean(y_pred_fake)))) +torch.mean(torch.nn.ReLU()(1.0 - (y_pred_fake - torch.mean(y_pred))))) / 2
if param.method == 'rmcos':
y_pred = D(x)
errG = calc_advloss_G(y_pred, y_pred_fake, y, s=param.s, m=param.m)
# errG += param.gamma * BCE_stable(y_pred_fake, y2)
errG.backward()
D_G = y_pred_fake.data.mean()
optimizerG.step()
decayD.step()
decayG.step()
if i % param.save_every == 0:
# evaluate
with torch.no_grad():
dir_output = os.path.join(param.dir_output_image, str(i))
create_dir(dir_output)
fids, inception_scores = validate_fake_images(G, dir_output, param.device)
# log
printBoth(param.log, 'i={}; loss_D={:0.5}; loss_G={:0.5}; fids={}; inception_scores={}'.\
format(i, errD.item(), errG.item(), str(fids), str(inception_scores)))
# save model
torch.save(G.state_dict(), param.dir_output_model + '/{}_G.pth'.format(i))
torch.save(D.state_dict(), param.dir_output_model + '/{}_D.pth'.format(i))