-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathseq2seq_model.py
298 lines (262 loc) · 15.2 KB
/
seq2seq_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Copyright 2017, Center of Speech and Language of Tsinghua University.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sequence-to-sequence model with an attention mechanism."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import array_ops
import rnn_cell
import data_utils
import seq2seq
from tensorflow.core.protobuf import saver_pb2
class Seq2SeqModel(object):
"""Sequence-to-sequence model with attention and for multiple buckets.
This class implements a recurrent neural network as encoder,
and an attention-based decoder. This is the same as the model described in
this paper: http://arxiv.org/abs/1409.0473 - please look there for details.
"""
def __init__(self, source_vocab_size, target_vocab_size, buckets, hidden_edim, hidden_units,
num_layers, keep_prob, max_gradient_norm, batch_size, learning_rate, learning_rate_decay_factor,
beam_size, forward_only=False):
"""Create the model.
Args:
source_vocab_size: size of the source vocabulary.
target_vocab_size: size of the target vocabulary.
buckets: a list of pairs (I, O), where I specifies maximum input length
that will be processed in that bucket, and O specifies maximum output
length. Training instances that have inputs longer than I or outputs
longer than O will be pushed to the next bucket and padded accordingly.
We assume that the list is sorted, e.g., [(2, 4), (8, 16)].
hidden_edim: number of dimensions for word embedding
hidden_units: number of hidden units for each layer
num_layers: number of layers in the model.
keep_prob: keep probability used for dropout.
max_gradient_norm: gradients will be clipped to maximally this norm.
batch_size: the size of the batches used during training;
the model construction is independent of batch_size, so it can be
changed after initialization if this is convenient, e.g., for decoding.
learning_rate: learning rate to start with.
learning_rate_decay_factor: decay learning rate by this much when needed.
beam_size: the beam size for beam search decoding
forward_only: if set, we do not construct the backward pass in the model.
"""
self.source_vocab_size = source_vocab_size
self.target_vocab_size = target_vocab_size
self.buckets = buckets
self.batch_size = batch_size
self.learning_rate = tf.Variable(float(learning_rate), trainable=False)
self.learning_rate_decay_op = self.learning_rate.assign(
self.learning_rate * learning_rate_decay_factor)
self.global_step = tf.Variable(0, trainable=False)
w = tf.get_variable("proj_w", [hidden_units // 2, self.target_vocab_size],
initializer=tf.random_normal_initializer(0, 0.01, seed=123))
b = tf.get_variable("proj_b", [self.target_vocab_size],
initializer=tf.constant_initializer(0.0), trainable=False)
output_projection = (w, b) # before softmax, there is an output projection
def softmax_loss_function(logit, target): # loss function of seq2seq model
logit = nn_ops.xw_plus_b(logit, output_projection[0], output_projection[1])
target = array_ops.reshape(target, [-1])
return nn_ops.sparse_softmax_cross_entropy_with_logits(labels=target, logits=logit)
single_cell = rnn_cell.GRUCell(hidden_units)
cell = single_cell
if num_layers > 1:
cell = rnn_cell.MultiRNNCell([single_cell] * num_layers)
if not forward_only:
cell = rnn_cell.DropoutWrapper(cell, output_keep_prob=float(keep_prob), seed=123)
# The seq2seq function: we use embedding for the input and attention.
def seq2seq_f(encoder_inputs, encoder_mask, decoder_inputs, do_decode):
return seq2seq.embedding_attention_seq2seq(
encoder_inputs, encoder_mask, decoder_inputs, cell,
num_encoder_symbols=source_vocab_size,
num_decoder_symbols=target_vocab_size,
embedding_size=hidden_edim,
beam_size=beam_size,
output_projection=output_projection,
num_layers=num_layers,
feed_previous=do_decode)
# Feeds for inputs.
self.encoder_inputs = []
self.decoder_inputs = []
self.target_weights = []
for i in xrange(buckets[-1][0]): # Last bucket is the biggest one.
self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name="encoder{0}".format(i)))
for i in xrange(buckets[-1][1] + 1):
self.decoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name="decoder{0}".format(i)))
self.target_weights.append(tf.placeholder(tf.float32, shape=[None],
name="weight{0}".format(i)))
self.encoder_mask = tf.placeholder(tf.int32, shape=[None, None],
name="encoder_mask")
# Our targets are decoder inputs shifted by one.
targets = [self.decoder_inputs[i + 1]
for i in xrange(len(self.decoder_inputs) - 1)]
# Training outputs and losses.
if forward_only:
self.outputs, self.losses, self.symbols = seq2seq.model_with_buckets(
self.encoder_inputs, self.encoder_mask, self.decoder_inputs, targets,
self.target_weights, buckets, lambda x, y, z: seq2seq_f(x, y, z, True),
softmax_loss_function=softmax_loss_function)
else:
self.outputs, self.losses, self.symbols = seq2seq.model_with_buckets(
self.encoder_inputs, self.encoder_mask, self.decoder_inputs, targets,
self.target_weights, buckets,
lambda x, y, z: seq2seq_f(x, y, z, False),
softmax_loss_function=softmax_loss_function)
# Gradients and SGD update operation for training the model.
params_to_update = tf.trainable_variables()
if not forward_only:
self.gradient_norms = []
self.gradient_norms_print = []
self.updates = []
opt = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
for b in xrange(len(buckets)):
gradients = tf.gradients(self.losses[b], params_to_update,
aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)
clipped_gradients, norm = tf.clip_by_global_norm(gradients,
max_gradient_norm)
self.gradient_norms.append(norm)
self.updates.append(opt.apply_gradients(
zip(clipped_gradients, params_to_update), global_step=self.global_step))
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=1000, # keep all checkpoints
keep_checkpoint_every_n_hours=6)
def step(self, session, encoder_inputs, encoder_mask, decoder_inputs, target_weights,
bucket_id, forward_only):
"""Run a step of the model feeding the given inputs.
Args:
session: tensorflow session to use.
encoder_inputs: list of numpy int vectors to feed as encoder inputs.
encoder_mask: the mask of encoder inputs, when an input is PAD, its mask value is 0.
decoder_inputs: list of numpy int vectors to feed as decoder inputs.
target_weights: list of numpy float vectors to feed as target weights.
bucket_id: which bucket of the model to use.
forward_only: whether to do the backward step or only forward.
Returns:
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, and the outputs.
Raises:
ValueError: if length of encoder_inputs, decoder_inputs, or
target_weights disagrees with bucket size for the specified bucket_id.
"""
# Check if the sizes match.
encoder_size, decoder_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
if len(decoder_inputs) != decoder_size:
raise ValueError("Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(decoder_inputs), decoder_size))
if len(target_weights) != decoder_size:
raise ValueError("Weights length must be equal to the one in bucket,"
" %d != %d." % (len(target_weights), decoder_size))
# Input feed: encoder inputs, decoder inputs, target_weights, as provided.
input_feed = {}
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
for l in xrange(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
input_feed[self.encoder_mask.name] = encoder_mask
# Since our targets are decoder inputs shifted by one, we need one more.
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)
# Output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [self.updates[bucket_id], # Update Op that does SGD.
self.gradient_norms[bucket_id], # Gradient norm.
self.losses[bucket_id]] # Loss for this batch.
else:
output_feed = [self.losses[bucket_id]] # Loss for this batch.
if self.symbols[0]:
for l in xrange(decoder_size): # Output symbols when decoding
output_feed.append(self.symbols[bucket_id][l])
else:
for l in xrange(decoder_size): # Output logits when evaluating on dev
output_feed.append(self.outputs[bucket_id][l])
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], None # Gradient norm, loss, no outputs.
else:
return None, outputs[0], outputs[1:] # No gradient norm, loss, outputs.
def get_batch(self, data, bucket_id):
"""Get a random batch of data from the specified bucket, prepare for step.
To feed data in step(..) it must be a list of batch-major vectors, while
data here contains single length-major cases. So the main logic of this
function is to re-index data cases to be in the proper format for feeding.
Args:
data: a tuple of size len(self.buckets) in which each element contains
lists of pairs of input and output data that we use to create a batch.
bucket_id: integer, which bucket to get the batch for.
Returns:
The tuple (encoder_inputs, encoder_mask, decoder_inputs, target_weights) for
the constructed batch that has the proper format to call step(...) later.
"""
encoder_size, decoder_size = self.buckets[bucket_id]
encoder_inputs, decoder_inputs = [], []
encoder_mask = []
# Get a random batch of encoder and decoder inputs from data,
# pad them if needed, reverse encoder inputs and add GO to decoder.
for _ in xrange(self.batch_size):
encoder_input, decoder_input = random.choice(data[bucket_id])
# Encoder inputs are padded and then reversed.
encoder_pad = [data_utils.PAD_ID] * (encoder_size - len(encoder_input))
encoder_inputs.append(list(encoder_input + encoder_pad))
encoder_mask.append([1] * len(encoder_input) + [0] * (encoder_size - len(encoder_input)))
# Decoder inputs get an extra "GO" symbol, and are padded then.
decoder_pad_size = decoder_size - len(decoder_input) - 1
decoder_inputs.append([data_utils.GO_ID] + decoder_input +
[data_utils.PAD_ID] * decoder_pad_size)
# Now we create batch-major vectors from the data selected above.
batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []
# Batch encoder inputs are just re-indexed encoder_inputs.
for length_idx in xrange(encoder_size):
batch_encoder_inputs.append(
np.array([encoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Batch decoder inputs are re-indexed decoder_inputs, we create weights.
for length_idx in xrange(decoder_size):
batch_decoder_inputs.append(
np.array([decoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Create target_weights to be 0 for targets that are padding.
batch_weight = np.ones(self.batch_size, dtype=np.float32)
for batch_idx in xrange(self.batch_size):
# We set weight to 0 if the corresponding target is a PAD symbol.
# The corresponding target is decoder_input shifted by 1 forward.
if length_idx < decoder_size - 1:
target = decoder_inputs[batch_idx][length_idx + 1]
if length_idx == decoder_size - 1 or target == data_utils.PAD_ID:
batch_weight[batch_idx] = 0.0
batch_weights.append(batch_weight)
return batch_encoder_inputs, encoder_mask, batch_decoder_inputs, batch_weights