-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
70 lines (61 loc) · 3.56 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
class NeuralCollaborativeFiltering(torch.nn.Module):
def __init__(self, user_num, item_num, predictive_factor=32):
super(NeuralCollaborativeFiltering, self).__init__()
self.mlp_user_embeddings = torch.nn.Embedding(num_embeddings=user_num, embedding_dim=2*predictive_factor)
self.mlp_item_embeddings = torch.nn.Embedding(num_embeddings=item_num, embedding_dim=2*predictive_factor)
self.gmf_user_embeddings = torch.nn.Embedding(num_embeddings=user_num, embedding_dim=2*predictive_factor)
self.gmf_item_embeddings = torch.nn.Embedding(num_embeddings=item_num, embedding_dim=2*predictive_factor)
self.mlp = torch.nn.Sequential(torch.nn.Linear(4*predictive_factor, 2*predictive_factor),
torch.nn.ReLU(),
torch.nn.Linear(2*predictive_factor, predictive_factor),
torch.nn.ReLU(),
torch.nn.Linear(predictive_factor, predictive_factor//2),
torch.nn.ReLU()
)
self.gmf_out = torch.nn.Linear(2*predictive_factor, 1)
self.gmf_out.weight = torch.nn.Parameter(torch.ones(1, 2*predictive_factor))
self.mlp_out = torch.nn.Linear(predictive_factor//2, 1)
self.output_logits = torch.nn.Linear(predictive_factor, 1)
self.model_blending = 0.5 # alpha parameter, equation 13 in the paper
self.initialize_weights()
self.join_output_weights()
def initialize_weights(self):
torch.nn.init.normal_(self.mlp_user_embeddings.weight, std=0.01)
torch.nn.init.normal_(self.mlp_item_embeddings.weight, std=0.01)
torch.nn.init.normal_(self.gmf_user_embeddings.weight, std=0.01)
torch.nn.init.normal_(self.gmf_item_embeddings.weight, std=0.01)
for layer in self.mlp:
if isinstance(layer, torch.nn.Linear):
torch.nn.init.xavier_uniform_(layer.weight)
torch.nn.init.kaiming_uniform_(self.gmf_out.weight, a=1)
torch.nn.init.kaiming_uniform_(self.mlp_out.weight, a=1)
def forward(self, x):
user_id, item_id = x[:, 0], x[:, 1]
gmf_product = self.gmf_forward(user_id, item_id)
mlp_output = self.mlp_forward(user_id, item_id)
return self.output_logits(torch.cat([gmf_product, mlp_output], dim=1)).view(-1)
def gmf_forward(self, user_id, item_id):
user_emb = self.gmf_user_embeddings(user_id)
item_emb = self.gmf_item_embeddings(item_id)
return torch.mul(user_emb, item_emb)
def mlp_forward(self, user_id, item_id):
user_emb = self.mlp_user_embeddings(user_id)
item_emb = self.mlp_item_embeddings(item_id)
return self.mlp(torch.cat([user_emb, item_emb], dim=1))
def join_output_weights(self):
W = torch.nn.Parameter(torch.cat((self.model_blending*self.gmf_out.weight, (1-self.model_blending)*self.mlp_out.weight), dim=1))
self.output_logits.weight = W
def layer_setter(self, model, model_copy):
for m, mc in zip(model.parameters(), model_copy.parameters()):
mc.data[:] = m.data[:]
def load_server_weights(self, server_model):
self.layer_setter(server_model.mlp_item_embeddings, self.mlp_item_embeddings)
self.layer_setter(server_model.gmf_item_embeddings, self.gmf_item_embeddings)
self.layer_setter(server_model.mlp, self.mlp)
self.layer_setter(server_model.gmf_out, self.gmf_out)
self.layer_setter(server_model.mlp_out, self.mlp_out)
self.layer_setter(server_model.output_logits, self.output_logits)
if __name__ == '__main__':
ncf = NeuralCollaborativeFiltering(100, 100, 64)
print(ncf)