|
| 1 | +import pyttsx3 |
| 2 | +import cv2 |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +# TTS |
| 6 | +engine = pyttsx3.init() |
| 7 | + |
| 8 | +# TTS Functionality |
| 9 | +def speak(text): |
| 10 | + engine.say(text) |
| 11 | + engine.runAndWait() |
| 12 | + |
| 13 | +# Load your model here, u can use yolov3 v9 v8 v7 doesn't matter, in my case, I used v3! |
| 14 | +net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg") |
| 15 | +layer_names = net.getLayerNames() # Get the layer names |
| 16 | +output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()] # output layers |
| 17 | + |
| 18 | +# Classnames for our model ( in this case YOLOv3 ofc ) |
| 19 | +with open("coco.names", "r") as f: |
| 20 | + classes = [line.strip() for line in f.readlines()] |
| 21 | + |
| 22 | +# Initialize the webcam, in my opinion my webcam device is 1 |
| 23 | +# you can check it out in device manager to see how many webcams you've got. |
| 24 | +# example : VideoCapture(0) - VideoCapture(3) - etc... |
| 25 | +cap = cv2.VideoCapture(1) |
| 26 | + |
| 27 | +while True: |
| 28 | + ret, frame = cap.read() |
| 29 | + if not ret: |
| 30 | + print("Failed to grab frame") |
| 31 | + break |
| 32 | + |
| 33 | + height, width, channels = frame.shape |
| 34 | + |
| 35 | + blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False) |
| 36 | + net.setInput(blob) |
| 37 | + outs = net.forward(output_layers) |
| 38 | + |
| 39 | + class_ids = [] |
| 40 | + confidences = [] |
| 41 | + boxes = [] |
| 42 | + |
| 43 | + for out in outs: |
| 44 | + for detection in out: |
| 45 | + scores = detection[5:] |
| 46 | + class_id = np.argmax(scores) |
| 47 | + confidence = scores[class_id] |
| 48 | + if confidence > 0.5: # Confidence threshold (You can increase it if you want), by confidence you can tell how much u sure about ur object detection guess, something like that... |
| 49 | + center_x = int(detection[0] * width) |
| 50 | + center_y = int(detection[1] * height) |
| 51 | + w = int(detection[2] * width) |
| 52 | + h = int(detection[3] * height) |
| 53 | + x = int(center_x - w / 2) |
| 54 | + y = int(center_y - h / 2) |
| 55 | + |
| 56 | + boxes.append([x, y, w, h]) |
| 57 | + confidences.append(float(confidence)) |
| 58 | + class_ids.append(class_id) |
| 59 | + |
| 60 | + indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) |
| 61 | + |
| 62 | + if len(indexes) > 0: |
| 63 | + for i in indexes.flatten(): |
| 64 | + x, y, w, h = boxes[i] |
| 65 | + label = str(classes[class_ids[i]]) |
| 66 | + confidence = str(round(confidences[i], 2)) |
| 67 | + |
| 68 | + # Drawing frames around detected objects |
| 69 | + cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) |
| 70 | + cv2.putText(frame, label + " " + confidence, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) |
| 71 | + |
| 72 | + |
| 73 | + # Calling tts to tell me what Computer watching (like before, u can delete this if u want) |
| 74 | + speak(f"You are showing me {label}") |
| 75 | + |
| 76 | + # Window name |
| 77 | + cv2.imshow("Object Detection by AlirezaPlus", frame) |
| 78 | + |
| 79 | + # Break on 'q' key ( to quit the instance just press Q (WAITKEY 1 stands for 1 ms thats mean u have to hold ur Q for 1ms which is instant is this case)) |
| 80 | + if cv2.waitKey(1) & 0xFF == ord('q'): |
| 81 | + break |
| 82 | + |
| 83 | +cap.release() |
| 84 | +cv2.destroyAllWindows() |
0 commit comments