|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## Alternatively referred to as a partial path or non-absolute path, a relative path is a URL that only contains a portion of the full path." |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "## An absolute path is defined as specifying the location of a file or directory from the root directory(/). In other words,we can say that an absolute path is a complete path from start of actual file system from / directory." |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "## On Windows, what does Path('C:/Users') / 'Al' evaluate to?\n", |
| 22 | + "## Ans : It is invalid path" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "metadata": {}, |
| 28 | + "source": [ |
| 29 | + "## On Windows, what does 'C:/Users' / 'Al' evaluate to?\n", |
| 30 | + "## Answer: It is unable to find AI so it is giving this error ,The system cannot find the path specified." |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 2, |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [ |
| 38 | + { |
| 39 | + "data": { |
| 40 | + "application/javascript": [ |
| 41 | + "\n", |
| 42 | + " if (window._pyforest_update_imports_cell) { window._pyforest_update_imports_cell('import os'); }\n", |
| 43 | + " " |
| 44 | + ], |
| 45 | + "text/plain": [ |
| 46 | + "<IPython.core.display.Javascript object>" |
| 47 | + ] |
| 48 | + }, |
| 49 | + "metadata": {}, |
| 50 | + "output_type": "display_data" |
| 51 | + }, |
| 52 | + { |
| 53 | + "data": { |
| 54 | + "text/plain": [ |
| 55 | + "'C:\\\\Users\\\\91706\\\\Python Assignments'" |
| 56 | + ] |
| 57 | + }, |
| 58 | + "execution_count": 2, |
| 59 | + "metadata": {}, |
| 60 | + "output_type": "execute_result" |
| 61 | + } |
| 62 | + ], |
| 63 | + "source": [ |
| 64 | + "## returns the current working directory\n", |
| 65 | + "os.getcwd()" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": 3, |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [ |
| 73 | + { |
| 74 | + "data": { |
| 75 | + "application/javascript": [ |
| 76 | + "\n", |
| 77 | + " if (window._pyforest_update_imports_cell) { window._pyforest_update_imports_cell('import os'); }\n", |
| 78 | + " " |
| 79 | + ], |
| 80 | + "text/plain": [ |
| 81 | + "<IPython.core.display.Javascript object>" |
| 82 | + ] |
| 83 | + }, |
| 84 | + "metadata": {}, |
| 85 | + "output_type": "display_data" |
| 86 | + } |
| 87 | + ], |
| 88 | + "source": [ |
| 89 | + "## changes the current working directory\n", |
| 90 | + "os.chdir(r'C:\\\\Users\\\\91706\\\\Python-ML Tutorials')" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": 4, |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [ |
| 98 | + { |
| 99 | + "data": { |
| 100 | + "application/javascript": [ |
| 101 | + "\n", |
| 102 | + " if (window._pyforest_update_imports_cell) { window._pyforest_update_imports_cell('import os'); }\n", |
| 103 | + " " |
| 104 | + ], |
| 105 | + "text/plain": [ |
| 106 | + "<IPython.core.display.Javascript object>" |
| 107 | + ] |
| 108 | + }, |
| 109 | + "metadata": {}, |
| 110 | + "output_type": "display_data" |
| 111 | + }, |
| 112 | + { |
| 113 | + "data": { |
| 114 | + "text/plain": [ |
| 115 | + "'C:\\\\Users\\\\91706\\\\Python-ML Tutorials'" |
| 116 | + ] |
| 117 | + }, |
| 118 | + "execution_count": 4, |
| 119 | + "metadata": {}, |
| 120 | + "output_type": "execute_result" |
| 121 | + } |
| 122 | + ], |
| 123 | + "source": [ |
| 124 | + "os.getcwd()" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "markdown", |
| 129 | + "metadata": {}, |
| 130 | + "source": [ |
| 131 | + "## The . folder is the current folder, and .. is the parent folder" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "markdown", |
| 136 | + "metadata": {}, |
| 137 | + "source": [ |
| 138 | + "## C:\\bacon\\eggs is the dir name, while spam.txt is the base name" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "markdown", |
| 143 | + "metadata": {}, |
| 144 | + "source": [ |
| 145 | + "## The string 'r' for read mode, 'w' for write mode, and 'a' for append mode" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "markdown", |
| 150 | + "metadata": {}, |
| 151 | + "source": [ |
| 152 | + "## If existing file is opened in write mode the it is erased and completely overwritten." |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 10, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [ |
| 160 | + { |
| 161 | + "data": { |
| 162 | + "application/javascript": [ |
| 163 | + "\n", |
| 164 | + " if (window._pyforest_update_imports_cell) { window._pyforest_update_imports_cell('import os'); }\n", |
| 165 | + " " |
| 166 | + ], |
| 167 | + "text/plain": [ |
| 168 | + "<IPython.core.display.Javascript object>" |
| 169 | + ] |
| 170 | + }, |
| 171 | + "metadata": {}, |
| 172 | + "output_type": "display_data" |
| 173 | + } |
| 174 | + ], |
| 175 | + "source": [ |
| 176 | + "os.chdir(r'C:\\\\Users\\\\91706\\\\Python Assignments')\n" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": 12, |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [ |
| 184 | + { |
| 185 | + "name": "stdout", |
| 186 | + "output_type": "stream", |
| 187 | + "text": [ |
| 188 | + "b'Hi, I am Akash.\\nI work in Capgemini as MuleSoft Developer.\\nI live in Mumbai.\\n'\n", |
| 189 | + "Closed the file successfully!!\n" |
| 190 | + ] |
| 191 | + } |
| 192 | + ], |
| 193 | + "source": [ |
| 194 | + "import os, sys\n", |
| 195 | + "# Open a file\n", |
| 196 | + "fd = os.open(\"Sample.txt\",os.O_RDWR)\n", |
| 197 | + "# Reading text using read function\n", |
| 198 | + "result = os.read(fd,150)\n", |
| 199 | + "print(result)\n", |
| 200 | + "# Close opened file\n", |
| 201 | + "os.close(fd)\n", |
| 202 | + "print(\"Closed the file successfully!!\")" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "code", |
| 207 | + "execution_count": 17, |
| 208 | + "metadata": {}, |
| 209 | + "outputs": [ |
| 210 | + { |
| 211 | + "name": "stdout", |
| 212 | + "output_type": "stream", |
| 213 | + "text": [ |
| 214 | + "['Hi, I am Akash.\\n', 'I work in Capgemini as MuleSoft Developer.\\n', 'I live in Mumbai.\\n']\n" |
| 215 | + ] |
| 216 | + } |
| 217 | + ], |
| 218 | + "source": [ |
| 219 | + "## The readlines() method returns a list containing each line in the file as a list item.\n", |
| 220 | + "f = open(\"Sample.txt\", \"r\")\n", |
| 221 | + "print(f.readlines(150))" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "markdown", |
| 226 | + "metadata": {}, |
| 227 | + "source": [ |
| 228 | + "## Difference between read() and readlines() is read return file contents as single string whereas, readlines returns a list where each string is a line from file contents" |
| 229 | + ] |
| 230 | + }, |
| 231 | + { |
| 232 | + "cell_type": "markdown", |
| 233 | + "metadata": {}, |
| 234 | + "source": [ |
| 235 | + "## A shelf value resembles a dictionary value; it has keys and values, along with keys() and values() methods that work similarly to the dictionary methods of the same names." |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "code", |
| 240 | + "execution_count": 18, |
| 241 | + "metadata": {}, |
| 242 | + "outputs": [], |
| 243 | + "source": [ |
| 244 | + "# At first, we have to import the 'Shelve' module. \n", |
| 245 | + "import shelve \n", |
| 246 | + " \n", |
| 247 | + "# In this step, we create a shelf file. \n", |
| 248 | + "shfile = shelve.open(\"shelf_file\") \n", |
| 249 | + " \n", |
| 250 | + "# we create a data object which in this case is a book_list. \n", |
| 251 | + "my_movie_list =['Avengers', 'Venom', \n", |
| 252 | + " 'A_Quiet_Place'] \n", |
| 253 | + " \n", |
| 254 | + "# we are assigning a dictionary key to the list \n", |
| 255 | + "# which we will want to retrieve \n", |
| 256 | + "shfile['movie_list']= my_movie_list \n", |
| 257 | + " \n", |
| 258 | + "# now, we simply close the shelf file. \n", |
| 259 | + "shfile.close() " |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": 19, |
| 265 | + "metadata": {}, |
| 266 | + "outputs": [ |
| 267 | + { |
| 268 | + "name": "stdout", |
| 269 | + "output_type": "stream", |
| 270 | + "text": [ |
| 271 | + "['Avengers', 'Venom', 'A_Quiet_Place']\n" |
| 272 | + ] |
| 273 | + } |
| 274 | + ], |
| 275 | + "source": [ |
| 276 | + "# In this step, we create a shelf file. \n", |
| 277 | + "var = shelve.open(\"shelf_file\") \n", |
| 278 | + " \n", |
| 279 | + "# Now, this 'var' variable points to all the \n", |
| 280 | + "# data objects in the file 'shelf_file'. \n", |
| 281 | + "print(var['movie_list']) \n", |
| 282 | + " \n", |
| 283 | + "# now, we simply close the file 'shelf_file'. \n", |
| 284 | + "var.close() " |
| 285 | + ] |
| 286 | + } |
| 287 | + ], |
| 288 | + "metadata": { |
| 289 | + "kernelspec": { |
| 290 | + "display_name": "Python 3", |
| 291 | + "language": "python", |
| 292 | + "name": "python3" |
| 293 | + }, |
| 294 | + "language_info": { |
| 295 | + "codemirror_mode": { |
| 296 | + "name": "ipython", |
| 297 | + "version": 3 |
| 298 | + }, |
| 299 | + "file_extension": ".py", |
| 300 | + "mimetype": "text/x-python", |
| 301 | + "name": "python", |
| 302 | + "nbconvert_exporter": "python", |
| 303 | + "pygments_lexer": "ipython3", |
| 304 | + "version": "3.8.5" |
| 305 | + } |
| 306 | + }, |
| 307 | + "nbformat": 4, |
| 308 | + "nbformat_minor": 4 |
| 309 | +} |
0 commit comments