-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathProject_Design.py
575 lines (492 loc) ยท 38.6 KB
/
Project_Design.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# !pip3 install geojson
# pip uninstall geopandas fiona pyproj rtree shapely
# conda install --channel conda-forge geopandas
import numpy as np
import pandas as pd
import geopandas as gpd
from dash import Dash , html, dcc
import jupyter_dash
import plotly.express as px
from dash.dependencies import Input , Output , State
import dash_bootstrap_components as dbc
from dash import html
from urllib.request import urlopen
import json
with open('stanford-gg870xt4706-geojson.json') as f:
ukr_json = json.load(f)
ukr1_df = pd.read_csv('ukr1_df.csv')
ukr1_df.drop('NL_NAME_1', axis = 1,inplace = True)
ukr1_df.dropna(axis = 0, inplace = True)
ukr1_df['Condition'] = np.where(
ukr1_df['control'] == 1 ,'Russian military control' , np.where(
ukr1_df['control'] == 2 ,'Ukrainian counter-attack','ukraine Liberated'))
Inflation_Data = pd.read_csv("Inflation.csv")
Inflation_Data.head()
# UR_Data = UR_Data.drop('Unnamed: 0' , axis =1)
# UR_Data = UR_Data.dropna(axis = 1)
Inflation_Data = Inflation_Data.drop(Inflation_Data.filter(regex='Unnamed').columns, axis=1)
Inflation_Data = Inflation_Data.drop(Inflation_Data.index[0:15] , axis = 0)
Inflation_Data.head()
UR_Data = pd.read_csv("Russia-Ukraine Equipment Losses - Origional.csv")
UR_Data.head()
UR_Data['UNHCR Ukraine Refugees'] = UR_Data['UNHCR Ukraine Refugees'].fillna(UR_Data["UNHCR Ukraine Refugees"].mean())
# UR_Data = UR_Data.dropna(axis = 1)
UR_Data = UR_Data.drop(UR_Data.filter(regex='Unnamed').columns, axis=1)
color_global = "#fbfcfc"
# "#ffffff" '#e9ecef' "#60A3D9"
FONT_AWESOME = "https://use.fontawesome.com/releases/v5.10.2/css/all.css"
app = Dash(external_stylesheets=[dbc.themes.BOOTSTRAP , FONT_AWESOME])
card_content = [
dbc.CardHeader("Card header"),
dbc.CardBody(
[
html.H5("Card title", className="card-title"),
html.P(
"This is some card content that we'll reuse",
className="card-text",
),
]
),
]
fig_map = px.choropleth_mapbox(ukr1_df, geojson=ukr_json,
color="Condition",
color_discrete_map={'Ukrainian counter-attack': "#FFD500" , #e6d385',
'ukraine Liberated': "#005BBB" , #5c7658',
'Russian military control':'#681313'
},
opacity = 1,
locations="Region",
featureidkey="properties.name_1",
center={"lat": 48.3794, "lon": 31.1656}, #49.4444ยฐ N, 32.0598ยฐ ukraine E 48.3794ยฐ N, 31.1656ยฐ E
mapbox_style= "carto-positron",#"carto-darkmatter", #carto-positron",
zoom=4.25,
hover_name="Region", # column to add to hover information
color_continuous_scale=px.colors.sequential.Plasma,
animation_frame='date'
)
fig_map.layout.updatemenus[0].buttons[0].args[1]["frame"]["duration"] = 2000
fig_map.update_layout(
autosize=False,
width=1300,
height=500,
margin={"r":0,"t":0,"l":0,"b":0},
legend=dict(
x=0,
y=1,
traceorder="normal",
font=dict(
family="sans-serif",
size=12,
color="black"
),
)
)
fig_map.update_layout(paper_bgcolor= color_global)
fourth_graph =dcc.Graph(
id="Random_graph2",
# figure={
# 'layout': {
# 'plot_bgcolor': colors['background'],
# 'paper_bgcolor': colors['background'],
# 'font': {
# 'color': colors['text']
# }
# }
# }
)
draw = px.line(UR_Data , x='Date' , y =["Ukraine_Total" , "Russia_Total"] , title="Ukraine VS Russia Human Losses")
draw.update_layout(paper_bgcolor= color_global , plot_bgcolor = color_global , xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False)
,
)
draw['data'][0]['line']['color']= "#FFD500"
draw['data'][1]['line']['color']= "#005BBB"
draw
draw_inflation = px.line(Inflation_Data, x='Date', y=["Fruits and vegatables.1", "Regulated Items.1"], title="")
draw_inflation.update_layout(paper_bgcolor=color_global, plot_bgcolor=color_global, xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False)
, title="Inflation"
)
draw_inflation['data'][0]['line']['color'] = "#ff6347"
draw_inflation['data'][1]['line']['color'] = "#005BBB"
draw_inflation
colors = {
'background': '#e9ecef',
'text': '#7FDBFF'
}
# inflation_fig = dcc.Graph(
# id="Inflation_Data",
# figure={
# 'data': [
# {'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name': 'SF'},
# {'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name': u'Montrรฉal'},
# ],
# 'layout': {
# 'plot_bgcolor': colors['background'],
# 'paper_bgcolor': colors['background'],
# 'font': {
# 'color': colors['text']
# }
# }
# }
# )
inflation_fig = html.Div(children=[
# dcc.Dropdown(Inflation_Data.columns, 'Headline CPI', id='Select_Y_axis1'
# ,style={ 'width': '200px','color': '#212121', 'background-color': '#e9ecef', }),
dcc.Graph(figure=draw_inflation,
id="Inflation_Data",
# figure={
# 'layout': {
# 'plot_bgcolor': colors['background'],
# 'paper_bgcolor': colors['background'],
# 'font': {
# 'color': colors['text']
# },
# }
# }
)
], style={'backgroundColor': color_global})
loss_df = pd.read_csv("Russia-Ukraine Equipment Losses - Origional.csv")
loss_df = loss_df.drop(loss_df.filter(regex='Unnamed').columns, axis=1)
url_df = pd.DataFrame({
# 'color': ['red','green','blue','pink','purple',"brown",'yellow','lightsalmon'],
'color': 'red',
'img_url': [
"https://upload.wikimedia.org/wikipedia/commons/0/03/Refugee_care_near_Poland_border_train_station_20220228.jpg",
# 1
"https://upload.wikimedia.org/wikipedia/commons/4/45/Ukrainian_refugees_from_2022%2C_crossing_into_Poland.jpg",
# 2
"https://upload.wikimedia.org/wikipedia/commons/b/b2/Warsaw_Central_Station_during_Ukrainian_refugee_crisis_10.jpg",
# 3
"https://media.npr.org/assets/img/2022/03/03/refugees.children.getty-7f16b5a3c923f8deac38a3ec875a217088a21421-s900-c85.webp",
# 4 A refugee girl carries a sibling after arriving at the Hungarian border
"https://static.euronews.com/articles/stories/06/50/67/90/1440x810_cmsv2_e6fc023b-e933-5cab-adb8-746b584ad7df-6506790.jpg",
# 5
"https://global.unitednations.entermediadb.net/assets/mediadb/services/module/asset/downloads/preset/Collections/UNHCR/Embargoed+2/18-03-2022_UNICEF_Ukraine-06.jpg/image1170x530cropped.jpg",
# 6
"https://idsb.tmgrup.com.tr/ly/uploads/images/2022/03/07/188440.jpg", # 7
"https://foreignpolicy.com/wp-content/uploads/2022/03/1-ukraine-refugee-russia-lviv-kyiv-slinski-lead-6O1A1436.jpg?w=1024&h=682&quality=90",
# 8
"https://s.abcnews.com/images/Health/refugee-family-ukraine-rt-ps-220301_1646153536012_hpMain_16x9_1600.jpg",
# 9
"https://www.unicef.org/sites/default/files/styles/press_release_feature/public/UN0599229.jpg?itok=7YP910M_",
# 10
"https://www.unicef.org/lac/sites/unicef.org.lac/files/styles/hero_mobile/public/UN0599222.jpg?itok=gxryGRtG",
# 11
"https://www.unicef.org/sites/default/files/styles/press_release_feature/public/UN0599229.jpg?itok=7YP910M_",
# 12
"https://i.inews.co.uk/content/uploads/2022/03/SEI_92096113-640x360.jpg",
# 13 12-year-old Alexandra sits on a bus holding her sister Esyea, 6, who cries as she waves at her mother Irina, as they leave Odesa in southern Ukraine
"https://s.abcnews.com/images/Health/refugee-family-ukraine-rt-ps-220301_1646153536012_hpMain_16x9_1600.jpg",
# 14
"https://feeds.abplive.com/onecms/images/uploaded-images/2022/03/15/b74c8da5878b774e2f10c5cc56c34888_original.jpg",
# 15
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQyfZtiVK8lHcmbGJ2B-NFvV3LumAn-BCQh87CdfjkDVKos2cNmrp82mtlTMBH41oBSrTI&usqp=CAU",
# 16
"https://s.yimg.com/ny/api/res/1.2/WllwocvCs8Ys4atysu414A--/YXBwaWQ9aGlnaGxhbmRlcjt3PTY0MA--/https://s.yimg.com/os/creatr-uploaded-images/2022-03/601cc0e3-9b0d-11ec-bb65-12f6cf1eab0d",
# 17
"https://www.politico.com/dims4/default/69bff3c/2147483647/strip/true/crop/5616x3744+0+0/resize/630x420!/quality/90/?url=https%3A%2F%2Fstatic.politico.com%2Fcc%2Fc8%2Ff0e47ed24f01913f9d5f807a8900%2Fpoland-russia-ukraine-war-64536.jpg",
# 18 Nearly two-thirds of Ukraineโs children have fled homes
"https://i.inews.co.uk/content/uploads/2022/03/SEI_92195951.jpg",
# 19 11-year-old Ukrainian boy who travelled 700 miles to Slovakia solo to flee the violence
"https://www.unicef.org/sites/default/files/styles/press_release_feature/public/UN0605554%20%281%29.jpg?itok=m60-zEPv",
# 20
"https://i.guim.co.uk/img/media/a0be4836730cd51c3ab508f9b05c847e641aa199/0_224_6720_4032/master/6720.jpg?width=620&quality=45&auto=format&fit=max&dpr=2&s=02cfc40d1629eb4cbcfb6db8a6d2e7a1",
# 21
"https://i.guim.co.uk/img/media/a5e7f33fb8d54b3a77917d865a431ddeae0a31bf/0_181_6720_4032/master/6720.jpg?width=620&quality=45&auto=format&fit=max&dpr=2&s=1df4e12f3107a186632d0fc7620e6d43",
# 22
"https://static.independent.co.uk/2022/03/10/11/Refugees%20welcome%20Zhanna%20Tetyana.jpg?quality=75&width=990&auto=webp&crop=982:726,smart",
# 23
"https://s.yimg.com/ny/api/res/1.2/xc3wMblzqwLNGy189jlbXw--/YXBwaWQ9aGlnaGxhbmRlcjt3PTcwNTtoPTQ3MDtjZj13ZWJw/https://s.yimg.com/uu/api/res/1.2/kRr_qP.7JozNyqSrOUpq2A--~B/aD01NjA7dz04NDA7YXBwaWQ9eXRhY2h5b24-/https://media.zenfs.com/en/la_times_articles_853/c021cab16de5b6e898600a337305e158",
# 24
"https://newsinfo.inquirer.net/files/2022/03/STJZOMG2IVPXXNXA2EMGYKJFQ4-768x614.jpg", # 25
"https://cdn.cnn.com/cnnnext/dam/assets/150210172942-01-ukraine-on-the-ground-0210-exlarge-169.jpg", # 26
"https://english.cdn.zeenews.com/sites/default/files/2022/03/20/1024193-ukrainerefugeecampxx.jpg", # 27
"https://english.cdn.zeenews.com/sites/default/files/2022/03/20/1024195-ukrainerefugeecampx.jpg", # 28
"https://static.timesofisrael.com/www/uploads/2022/03/AP22067637646912.jpg", # 29
"https://nypost.com/wp-content/uploads/sites/2/2022/03/irpin-civilians-attached-reuters-02.jpg?quality=90&strip=all",
# 30
"https://static.timesofisrael.com/www/uploads/2022/03/000_324G3CQ.jpg", # 31
"https://see.news/wp-content/uploads/2022/02/11-2.jpg", # 32
"https://www.eppgroup.eu/sites/default/files/styles/crop_838x582/public/photo/2022/02/gettyimages-1238719758.jpg?itok=MGRgK1Gf",
# 33
"",
"https://images.theconversation.com/files/449726/original/file-20220303-25-1gyhn6n.jpg?ixlib=rb-1.1.0&rect=172%2C14%2C4760%2C3308&q=20&auto=format&w=320&fit=clip&dpr=2&usm=12&cs=strip",
# 35
"https://img.thedailybeast.com/image/upload/c_crop,d_placeholder_euli9k,h_1688,w_3000,x_0,y_126/dpr_1.5/c_limit,w_1044/fl_lossy,q_auto/v1646748600/GettyImages-1239006263_wubznv",
# 36
"https://gcaptain.com/wp-content/uploads/2022/03/2022-03-05T184932Z_668485574_RC2GWS9BX210_RTRMADP_3_UKRAINE-CRISIS-LVIV-TRAIN-STATION-2048x1316.jpg",
# 37
"https://www.vaticannews.va/content/dam/vaticannews/agenzie/images/afp/2022/03/09/13/1646827355982.jpg/_jcr_content/renditions/cq5dam.thumbnail.cropped.750.422.jpeg",
# 38
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRamYJL5xRCpQBfCICeTr6vv7LlkJX-4IU_ow&usqp=CAU", # 39
"https://content.gallup.com/origin/gallupinc/GallupSpaces/Production/Cms/POLL/xgssemj54kaobqpbikihpw.jpg", # 40
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRY47-Fpv561eO31puQaLUsePShc8l7q_yAew&usqp=CAU", # 41
"https://i2-prod.dailyrecord.co.uk/incoming/article26439636.ece/ALTERNATES/s1200c/1_JS260201516.jpg" # 42
],
'Story': [
'', # 1
'', # 2
'', # 3
'A refugee girl carries a sibling after arriving at the Hungarian border', # 4
'', # 5
'', # 6
'', # 7
'', # 8
'', # 9
'Families board a train at the station in Lviv, Ukraine, heading toward the Polish border on March 3', # 10
'', # 11
'', # 12
'', # 13
'', # 14
'12-year-old Alexandra sits on a bus holding her sister Esyea, 6, who cries as she waves at her mother Irina, as they leave Odesa in southern Ukraine',
# 15
'', # 16
'', # 17
'Nearly two-thirds of Ukraineโs children have fled homes', # 18
'11-year-old Ukrainian boy who travelled 700 miles to Slovakia solo to flee the violence', # 19
'Families arrive in Berdyszcze, Poland, after crossing the border from Ukraine.', # 20
'Ukrainian children after they crossed the Poland-Ukraine border at Medyka', # 21
'A boy holds a soft toy after crossing the border into Poland from Ukraine.', # 22
"Eighty-seven year-old Tetyana Vatazhok leaned" + "<br>" + "heavily on her crutches and set her face defiantly against the freezing cold as snow fell all around her.",
# 23
"Refugees fleeing the conflict from neighboring Ukraine help push an elderly lady sitting in a wheelchair, at the Romanian-Ukrainian border, in Siret, Romania.",
# 24
"An elderly woman is helped while crossing a destroyed bridge as she tries to leave the cith of Irpin , the the Kyiv Region",
# 25
"Refugees escape the fighting while Grad missile systems head to the front.", # 26
"Children who fled inside refugee camps.", # 27
"Elderly women who escaped russian bombarding.", # 28
"Ukrianian refugee in international Woman's day.", # 29
"Ukrainians flee Russian bombs as civilians are killed in small Kyiv suburb.", # 30
"Civilianse facing full distruction.", # 31
"Mother holding her daughter under shock.", # 32
"Civiliance facing full distruction.", # 33
"The elderly leaving home behind.", # 34
"", # 35
"6 year old Tanya died from thirst as Russia cut water supply.", # 36
"A woman cries as she comforts her son after learning she has to leave a bus which was reserved for the evacuation of orphans fleeing the ongoing Russian invasion outside the main train station in Lviv, Ukraine",
# 37
"", # 38
"", # 39
"", # 40
"", # 41
"" # 42
]
})
new_df = pd.concat([loss_df, url_df], axis=1, join='inner')
from jupyter_dash import JupyterDash
from dash import Dash, dcc, html, Input, Output, no_update
import plotly.graph_objects as go
fig = go.Figure(
go.Scatter(
x=loss_df['Date'],
y=loss_df['UNHCR Ukraine Refugees'],
# mode='markers',
# mode = "lines",
mode='lines+markers',
# size = loss_df['UNHCR Ukraine Refugees'],
# marker=dict(color=new_df['color'])
marker=dict(color='#005BBB')
# marker=dict(color='red')
)
)
fig.update_traces(hoverinfo="none", hovertemplate=None)
fig.update_layout(
paper_bgcolor=color_global, plot_bgcolor=color_global, xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False),
title={
'text': "Ukraine Refugees",
'y': 0.9,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'},
xaxis_title="Date",
yaxis_title="Number of Refugees",
legend_title="Ukraine Refugees",
font=dict(
family="Courier New, monospace",
size=18,
color="#005BBB"
)
)
# app = JupyterDash(_name_)
# server = app.server
# app = Dash()
Ukraine_refugees = html.Div([
dcc.Graph(id="graph-basic-2", figure=fig, clear_on_unhover=True),
dcc.Tooltip(id="graph-tooltip", direction='bottom'),
])
@app.callback(
Output("graph-tooltip", "show"),
Output("graph-tooltip", "bbox"),
Output("graph-tooltip", "children"),
Output("graph-tooltip", "direction"),
Input("graph-basic-2", "hoverData"),
)
def display_hover(hoverData):
if hoverData is None:
return False, no_update, no_update, no_update
# demo only shows the first point, but other points may also be available
pt = hoverData["points"][0]
bbox = pt["bbox"]
num = pt["pointNumber"]
df_row = new_df.iloc[num]
img_src = df_row['img_url']
children = [
html.Div([
html.Img(
src=img_src,
style={"width": "250px"},
),
html.P(
df_row['Story'],
style={"overflow-y": "auto"}
)
],
style={"width": "250px",
"overflow-y": "hidden"},
)
]
y = hoverData["points"][0]['y']
direction = "bottom" if y > 2 else "top"
return True, bbox, children, direction
card_icon = {
"color": "white",
"textAlign": "center",
"fontSize": 30,
"margin": "auto",
}
card1 = dbc.CardGroup(
[
dbc.Card(
dbc.CardBody(
[
html.H6("Human Losses", className="card-title", style={"text-align": "center"}),
html.H1("14,000", className="card-title", style={"text-align": "center"}),
# html.P("People Loss of ๐บ๐ฆ VS ๐ท๐บ", className="card-text",),
]
)
),
dbc.Card([
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1("๐ฉธ", style={"text-align": "center"}),
# html.Div(className="fa-regular fa-userโค๐", style=card_icon),
],
className="bg-primary",
style={"maxWidth": 75}, ),
],
className="mt-4 shadow",
)
card2 = dbc.CardGroup(
[
dbc.Card(
dbc.CardBody(
[
html.H6("Oil Barrel Price", className="card-title", style={"text-align": "center"}),
html.H1("107$", className="card-title", style={"text-align": "center"}),
# html.P("People Loss of ๐บ๐ฆ VS ๐ท๐บ", className="card-text",),
]
)
),
dbc.Card([
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1("๐ข๏ธ", style={"text-align": "center"}),
# html.Div(className="fa-regular fa-userโค๐", style=card_icon),
],
className="bg-primary",
style={"maxWidth": 75}, ),
],
className="mt-4 shadow",
)
card3 = dbc.CardGroup(
[
dbc.Card(
dbc.CardBody(
[
html.H6("Inflation", className="card-title", style={"text-align": "center"}),
html.H1("8.8%", className="card-title", style={"text-align": "center"}),
# html.P("People Loss of ๐บ๐ฆ VS ๐ท๐บ", className="card-text",),
]
)
),
dbc.Card([
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1("๐
", style={"text-align": "center"}),
# html.H1("๐" , style = {"text-align" : "center"}),
# html.Div(className="fa-regular fa-userโค๐", style=card_icon),
],
className="bg-primary",
style={"maxWidth": 75}, ),
],
className="mt-4 shadow",
)
card4 = dbc.CardGroup(
[
dbc.Card(
dbc.CardBody(
[
html.H6("Refugees", className="card-title", style={"text-align": "center"}),
html.H1("4,278,789", className="card-title", style={"text-align": "center"}),
# html.P("People Loss of ๐บ๐ฆ VS ๐ท๐บ", className="card-text",),
]
)
),
dbc.Card([
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1(" ", style={"text-align": "center"}),
html.H1("๐ ", style={"text-align": "center"}),
# html.H1("๐" , style = {"text-align" : "center"}),
# html.Div(className="fa-regular fa-userโค๐", style=card_icon),
],
className="bg-primary",
style={"maxWidth": 75}, ),
],
className="mt-4 shadow",
)
app.layout = html.Div(html.Div(children=[
dbc.Row(
[
html.H1("Ukraine Invasion", className="card-title",
style={"text-align": "center"})],
className="py-4",
),
dbc.Row(
[
dbc.Col(card1),
dbc.Col(card2),
dbc.Col(card3),
dbc.Col(card4),
], className="py-4",
),
dbc.Row([
dbc.Col(dcc.Graph(id="Random_graph1",
figure=fig_map
)),
], className="py-4", ),
dbc.Row([
dbc.Col(html.Div(children=[
# dcc.Dropdown(UR_Data.columns, 'Date', id='Select_Y_axis'
# ,style={ 'width': '200px','color': '#212121', 'background-color': '#e9ecef', }),
dcc.Graph(id="UR_Graph", figure=draw),
]), lg=7),
dbc.Col(inflation_fig,
style={"width": 350, "height": 350},
),
# dbc.Col(fourth_graph, lg=5),
], className="py-4",
style={'backgroundColor': color_global}),
dbc.Row([
dbc.Col(Ukraine_refugees),
], className="py-4", ),
], className="py-2 container", )
, style={'backgroundColor': color_global})
# '#e9ecef'
app.run_server()