-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
100 lines (77 loc) · 2.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import random
import math
from PIL import Image
import numpy as np
import torch
def str2bool(v):
if v.lower() in ['true', 1]:
return True
elif v.lower() in ['false', 0]:
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def count_params(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
lr = 0.1
if epoch >= 60:
lr = 0.02
if epoch >= 120:
lr = 0.004
if epoch >= 160:
lr = 0.0008
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class RandomErase(object):
def __init__(self, prob, sl, sh, r):
self.prob = prob
self.sl = sl
self.sh = sh
self.r = r
def __call__(self, img):
if random.uniform(0, 1) < self.prob:
return img
while True:
area = random.uniform(self.sl, self.sh) * img.size[0] * img.size[1]
ratio = random.uniform(self.r, 1/self.r)
h = int(round(math.sqrt(area * ratio)))
w = int(round(math.sqrt(area / ratio)))
if h < img.size[0] and w < img.size[1]:
x = random.randint(0, img.size[0] - h)
y = random.randint(0, img.size[1] - w)
img = np.array(img)
if len(img.shape) == 3:
for c in range(img.shape[2]):
img[x:x+h, y:y+w, c] = random.uniform(0, 1)
else:
img[x:x+h, y:y+w] = random.uniform(0, 1)
img = Image.fromarray(img)
return img